llama-hparams.cpp 2.0 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485
  1. #include "llama-hparams.h"
  2. #include "ggml.h"
  3. #include <algorithm>
  4. uint32_t llama_hparams::n_head(uint32_t il) const {
  5. if (il < n_layer) {
  6. return n_head_arr[il];
  7. }
  8. GGML_ABORT("fatal error");
  9. }
  10. uint32_t llama_hparams::n_head_kv(uint32_t il) const {
  11. if (il < n_layer) {
  12. return n_head_kv_arr[il];
  13. }
  14. GGML_ABORT("fatal error");
  15. }
  16. uint32_t llama_hparams::n_ff(uint32_t il) const {
  17. if (il < n_layer) {
  18. return n_ff_arr[il];
  19. }
  20. GGML_ABORT("fatal error");
  21. }
  22. uint32_t llama_hparams::n_gqa(uint32_t il) const {
  23. const uint32_t n_head = this->n_head(il);
  24. const uint32_t n_head_kv = this->n_head_kv(il);
  25. if (n_head_kv == 0) {
  26. return 0;
  27. }
  28. return n_head/n_head_kv;
  29. }
  30. uint32_t llama_hparams::n_embd_k_gqa(uint32_t il) const {
  31. const uint32_t n_head_kv = this->n_head_kv(il);
  32. return n_embd_head_k * n_head_kv;
  33. }
  34. uint32_t llama_hparams::n_embd_v_gqa(uint32_t il) const {
  35. const uint32_t n_head_kv = this->n_head_kv(il);
  36. return n_embd_head_v * n_head_kv;
  37. }
  38. uint32_t llama_hparams::n_embd_k_s() const {
  39. if (wkv_head_size != 0) {
  40. // for RWKV models
  41. return 2 * n_embd;
  42. }
  43. // TODO: maybe support other convolution strides than 1
  44. // NOTE: since the first column of the conv_state is shifted out each time, it's not actually needed
  45. return (ssm_d_conv > 0 ? ssm_d_conv - 1 : 0) * ssm_d_inner;
  46. }
  47. uint32_t llama_hparams::n_embd_v_s() const {
  48. if (wkv_head_size != 0) {
  49. // corresponds to RWKV's wkv_states size
  50. return n_embd * wkv_head_size;
  51. }
  52. // corresponds to Mamba's ssm_states size
  53. return ssm_d_state * ssm_d_inner;
  54. }
  55. bool llama_hparams::n_bskcn(uint32_t n, uint32_t il) const {
  56. if (il < n_layer) {
  57. return n_bskcn_arr[n][il] > 0;
  58. }
  59. GGML_ABORT("fatal error");
  60. }
  61. bool llama_hparams::cross_attention_layers(uint32_t il) const {
  62. return std::find(cross_attn_layers.begin(), cross_attn_layers.end(), il) != cross_attn_layers.end();
  63. }