Нема описа

Jeffrey Morgan 1579c4f06d build: install binutils alongside gcc in Dockerfile (#9475) пре 2 месеци
.github 76e903cf9d .github/workflows: swap order of go test and golangci-lint (#9389) пре 2 месеци
api be2ac1ed93 docs: fix api examples link (#9360) пре 2 месеци
app b901a712c6 docs: improve syntax highlighting in code blocks (#8854) пре 2 месеци
auth b732beba6a lint пре 9 месеци
cmd d721a02e7d test: add test cases for ListHandler (#9146) пре 2 месеци
convert 58245413f4 next ollama runner (#7913) пре 2 месеци
discover a499390648 build: support Compute Capability 5.0, 5.2 and 5.3 for CUDA 12.x (#8567) пре 2 месеци
docs 688925aca9 Windows ARM build (#9120) пре 2 месеци
envconfig dc13813a03 server: allow vscode-file origins (#9313) пре 2 месеци
format 716e365615 test: add test cases for HumanNumber (#9108) пре 2 месеци
fs 53d2990d9b model: add bos token if configured пре 2 месеци
integration abfdc4710f all: fix typos in documentation, code, and comments (#7021) пре 4 месеци
kvcache 21aa666a1e ml: Enable support for flash attention пре 2 месеци
llama 657685e85d fix: replace deprecated functions пре 2 месеци
llm 314573bfe8 config: allow setting context length through env var (#8938) пре 2 месеци
macapp b901a712c6 docs: improve syntax highlighting in code blocks (#8854) пре 2 месеци
ml 21aa666a1e ml: Enable support for flash attention пре 2 месеци
model 854a9195f3 attention: Remove unnecessary contiguous operations пре 2 месеци
openai 10d59d5f90 openai: finish_reason as tool_calls for streaming with tools (#7963) пре 2 месеци
parser 58245413f4 next ollama runner (#7913) пре 2 месеци
progress 78f403ff45 address code review comments пре 2 месеци
readline cb40d60469 chore: upgrade to gods v2 пре 4 месеци
runner 21aa666a1e ml: Enable support for flash attention пре 2 месеци
sample c245b0406f sample: remove transforms from greedy sampling (#9377) пре 2 месеци
scripts 688925aca9 Windows ARM build (#9120) пре 2 месеци
server 3519dd1c6e server/internal/client/ollama: hold DiskCache on Registry (#9463) пре 2 месеци
template 58245413f4 next ollama runner (#7913) пре 2 месеци
types b1fd7fef86 server: more support for mixed-case model names (#8017) пре 4 месеци
version 2c7f956b38 add version пре 1 година
.dockerignore dcfb7a105c next build (#8539) пре 3 месеци
.gitattributes 5b446cc815 chore: update gitattributes (#8860) пре 2 месеци
.gitignore 348b3e0983 server/internal: copy bmizerany/ollama-go to internal package (#9294) пре 2 месеци
.golangci.yaml 348b3e0983 server/internal: copy bmizerany/ollama-go to internal package (#9294) пре 2 месеци
CMakeLists.txt 96a97adf9b build: use correct GGML_HIP_NO_VMM compiler definition for ggml-hip (#9451) пре 2 месеци
CMakePresets.json a14912858e build: add compute capability 12.0 to CUDA 12 preset (#9426) пре 2 месеци
CONTRIBUTING.md 2099e2d267 CONTRIBUTING: provide clarity on good commit messages, and bad (#9405) пре 2 месеци
Dockerfile 1579c4f06d build: install binutils alongside gcc in Dockerfile (#9475) пре 2 месеци
LICENSE df5fdd6647 `proto` -> `ollama` пре 1 година
Makefile.sync d7d7e99662 llama: update llama.cpp vendor code to commit d7cfe1ff (#9356) пре 2 месеци
README.md af68d60a58 readme: add AstrBot to community integrations (#9442) пре 2 месеци
SECURITY.md 463a8aa273 Create SECURITY.md пре 9 месеци
go.mod e185c08ad9 go.mod: Use full version for go 1.24.0 пре 2 месеци
go.sum 2412adf42b server/internal: replace model delete API with new registry handler. (#9347) пре 2 месеци
main.go b732beba6a lint пре 9 месеци

README.md

  ollama

Ollama

Get up and running with large language models.

macOS

Download

Windows

Download

Linux

curl -fsSL https://ollama.com/install.sh | sh

Manual install instructions

Docker

The official Ollama Docker image ollama/ollama is available on Docker Hub.

Libraries

Community

Quickstart

To run and chat with Llama 3.2:

ollama run llama3.2

Model library

Ollama supports a list of models available on ollama.com/library

Here are some example models that can be downloaded:

Model Parameters Size Download
DeepSeek-R1 7B 4.7GB ollama run deepseek-r1
DeepSeek-R1 671B 404GB ollama run deepseek-r1:671b
Llama 3.3 70B 43GB ollama run llama3.3
Llama 3.2 3B 2.0GB ollama run llama3.2
Llama 3.2 1B 1.3GB ollama run llama3.2:1b
Llama 3.2 Vision 11B 7.9GB ollama run llama3.2-vision
Llama 3.2 Vision 90B 55GB ollama run llama3.2-vision:90b
Llama 3.1 8B 4.7GB ollama run llama3.1
Llama 3.1 405B 231GB ollama run llama3.1:405b
Phi 4 14B 9.1GB ollama run phi4
Phi 3 Mini 3.8B 2.3GB ollama run phi3
Gemma 2 2B 1.6GB ollama run gemma2:2b
Gemma 2 9B 5.5GB ollama run gemma2
Gemma 2 27B 16GB ollama run gemma2:27b
Mistral 7B 4.1GB ollama run mistral
Moondream 2 1.4B 829MB ollama run moondream
Neural Chat 7B 4.1GB ollama run neural-chat
Starling 7B 4.1GB ollama run starling-lm
Code Llama 7B 3.8GB ollama run codellama
Llama 2 Uncensored 7B 3.8GB ollama run llama2-uncensored
LLaVA 7B 4.5GB ollama run llava
Solar 10.7B 6.1GB ollama run solar

[!NOTE] You should have at least 8 GB of RAM available to run the 7B models, 16 GB to run the 13B models, and 32 GB to run the 33B models.

Customize a model

Import from GGUF

Ollama supports importing GGUF models in the Modelfile:

  1. Create a file named Modelfile, with a FROM instruction with the local filepath to the model you want to import.

    FROM ./vicuna-33b.Q4_0.gguf
    
  2. Create the model in Ollama

    ollama create example -f Modelfile
    
  3. Run the model

    ollama run example
    

Import from Safetensors

See the guide on importing models for more information.

Customize a prompt

Models from the Ollama library can be customized with a prompt. For example, to customize the llama3.2 model:

ollama pull llama3.2

Create a Modelfile:

FROM llama3.2

# set the temperature to 1 [higher is more creative, lower is more coherent]
PARAMETER temperature 1

# set the system message
SYSTEM """
You are Mario from Super Mario Bros. Answer as Mario, the assistant, only.
"""

Next, create and run the model:

ollama create mario -f ./Modelfile
ollama run mario
>>> hi
Hello! It's your friend Mario.

For more information on working with a Modelfile, see the Modelfile documentation.

CLI Reference

Create a model

ollama create is used to create a model from a Modelfile.

ollama create mymodel -f ./Modelfile

Pull a model

ollama pull llama3.2

This command can also be used to update a local model. Only the diff will be pulled.

Remove a model

ollama rm llama3.2

Copy a model

ollama cp llama3.2 my-model

Multiline input

For multiline input, you can wrap text with """:

>>> """Hello,
... world!
... """
I'm a basic program that prints the famous "Hello, world!" message to the console.

Multimodal models

ollama run llava "What's in this image? /Users/jmorgan/Desktop/smile.png"

Output: The image features a yellow smiley face, which is likely the central focus of the picture.

Pass the prompt as an argument

ollama run llama3.2 "Summarize this file: $(cat README.md)"

Output: Ollama is a lightweight, extensible framework for building and running language models on the local machine. It provides a simple API for creating, running, and managing models, as well as a library of pre-built models that can be easily used in a variety of applications.

Show model information

ollama show llama3.2

List models on your computer

ollama list

List which models are currently loaded

ollama ps

Stop a model which is currently running

ollama stop llama3.2

Start Ollama

ollama serve is used when you want to start ollama without running the desktop application.

Building

See the developer guide

Running local builds

Next, start the server:

./ollama serve

Finally, in a separate shell, run a model:

./ollama run llama3.2

REST API

Ollama has a REST API for running and managing models.

Generate a response

curl http://localhost:11434/api/generate -d '{
  "model": "llama3.2",
  "prompt":"Why is the sky blue?"
}'

Chat with a model

curl http://localhost:11434/api/chat -d '{
  "model": "llama3.2",
  "messages": [
    { "role": "user", "content": "why is the sky blue?" }
  ]
}'

See the API documentation for all endpoints.

Community Integrations

Web & Desktop

Cloud

Terminal

Apple Vision Pro

Database

  • pgai - PostgreSQL as a vector database (Create and search embeddings from Ollama models using pgvector)
  • MindsDB (Connects Ollama models with nearly 200 data platforms and apps)
  • chromem-go with example
  • Kangaroo (AI-powered SQL client and admin tool for popular databases)

Package managers

Libraries

Mobile

  • Enchanted
  • Maid
  • Ollama App (Modern and easy-to-use multi-platform client for Ollama)
  • ConfiChat (Lightweight, standalone, multi-platform, and privacy focused LLM chat interface with optional encryption)

Extensions & Plugins

Supported backends

  • llama.cpp project founded by Georgi Gerganov.

Observability

  • Lunary is the leading open-source LLM observability platform. It provides a variety of enterprise-grade features such as real-time analytics, prompt templates management, PII masking, and comprehensive agent tracing.
  • OpenLIT is an OpenTelemetry-native tool for monitoring Ollama Applications & GPUs using traces and metrics.
  • HoneyHive is an AI observability and evaluation platform for AI agents. Use HoneyHive to evaluate agent performance, interrogate failures, and monitor quality in production.
  • Langfuse is an open source LLM observability platform that enables teams to collaboratively monitor, evaluate and debug AI applications.
  • MLflow Tracing is an open source LLM observability tool with a convenient API to log and visualize traces, making it easy to debug and evaluate GenAI applications.