Tidak Ada Deskripsi

Michael Yang aee28501b5 Merge pull request #9661 from ollama/gemma 1 bulan lalu
.github 76e903cf9d .github/workflows: swap order of go test and golangci-lint (#9389) 2 bulan lalu
api e2252d0fc6 server/internal/registry: take over pulls from server package (#9485) 1 bulan lalu
app b901a712c6 docs: improve syntax highlighting in code blocks (#8854) 2 bulan lalu
auth b732beba6a lint 9 bulan lalu
cmd 05a01fdecb ml/backend/ggml: consolidate system info logging 1 bulan lalu
convert 83f0ec8269 all: address linter errors 1 bulan lalu
discover a499390648 build: support Compute Capability 5.0, 5.2 and 5.3 for CUDA 12.x (#8567) 2 bulan lalu
docs fe776293f7 Merge pull request #9569 from dwt/patch-1 1 bulan lalu
envconfig dc13813a03 server: allow vscode-file origins (#9313) 2 bulan lalu
format 716e365615 test: add test cases for HumanNumber (#9108) 2 bulan lalu
fs ab39e08eb9 llm: auto detect models that require Ollama Engine (#1) 1 bulan lalu
integration abfdc4710f all: fix typos in documentation, code, and comments (#7021) 4 bulan lalu
kvcache c6b6938b3a kvcache: fix tests by adding AvgPool2D stub 1 bulan lalu
llama 9e4642e9b3 ollama debug tensor 1 bulan lalu
llm ab39e08eb9 llm: auto detect models that require Ollama Engine (#1) 1 bulan lalu
macapp b901a712c6 docs: improve syntax highlighting in code blocks (#8854) 2 bulan lalu
ml 63a394068c use 2d pooling 1 bulan lalu
model 83f0ec8269 all: address linter errors 1 bulan lalu
openai 10d59d5f90 openai: finish_reason as tool_calls for streaming with tools (#7963) 2 bulan lalu
parser 58245413f4 next ollama runner (#7913) 2 bulan lalu
progress 78f403ff45 address code review comments 2 bulan lalu
readline cb40d60469 chore: upgrade to gods v2 4 bulan lalu
runner e093db92c4 sample: temporarily use grammars for constrained generation in new engine (#9586) 1 bulan lalu
sample 7e34f4fbfa sample: add numerical stability to temperature/softmax transform (#9631) 1 bulan lalu
scripts 4dcf80167a Build release for windows with local script (#9636) 1 bulan lalu
server 65b0f329d1 Revert "Allow models to force a new batch" 1 bulan lalu
template 58245413f4 next ollama runner (#7913) 2 bulan lalu
types b1fd7fef86 server: more support for mixed-case model names (#8017) 4 bulan lalu
version 2c7f956b38 add version 1 tahun lalu
.dockerignore dcfb7a105c next build (#8539) 3 bulan lalu
.gitattributes 5b446cc815 chore: update gitattributes (#8860) 2 bulan lalu
.gitignore 348b3e0983 server/internal: copy bmizerany/ollama-go to internal package (#9294) 2 bulan lalu
.golangci.yaml 348b3e0983 server/internal: copy bmizerany/ollama-go to internal package (#9294) 2 bulan lalu
CMakeLists.txt 96a97adf9b build: use correct GGML_HIP_NO_VMM compiler definition for ggml-hip (#9451) 2 bulan lalu
CMakePresets.json a14912858e build: add compute capability 12.0 to CUDA 12 preset (#9426) 2 bulan lalu
CONTRIBUTING.md 2099e2d267 CONTRIBUTING: provide clarity on good commit messages, and bad (#9405) 2 bulan lalu
Dockerfile b428ddd796 docker: use go version from go.mod 1 bulan lalu
LICENSE df5fdd6647 `proto` -> `ollama` 1 tahun lalu
Makefile.sync d7d7e99662 llama: update llama.cpp vendor code to commit d7cfe1ff (#9356) 2 bulan lalu
README.md 8585b7b151 docs: add opik to observability integrations (#9626) 1 bulan lalu
SECURITY.md 463a8aa273 Create SECURITY.md 9 bulan lalu
go.mod 0682dae027 sample: improve ollama engine sampler performance (#9374) 1 bulan lalu
go.sum e2252d0fc6 server/internal/registry: take over pulls from server package (#9485) 1 bulan lalu
main.go b732beba6a lint 9 bulan lalu

README.md

  ollama

Ollama

Get up and running with large language models.

macOS

Download

Windows

Download

Linux

curl -fsSL https://ollama.com/install.sh | sh

Manual install instructions

Docker

The official Ollama Docker image ollama/ollama is available on Docker Hub.

Libraries

Community

Quickstart

To run and chat with Llama 3.2:

ollama run llama3.2

Model library

Ollama supports a list of models available on ollama.com/library

Here are some example models that can be downloaded:

Model Parameters Size Download
QwQ 32B 20GB ollama run qwq
DeepSeek-R1 7B 4.7GB ollama run deepseek-r1
DeepSeek-R1 671B 404GB ollama run deepseek-r1:671b
Llama 3.3 70B 43GB ollama run llama3.3
Llama 3.2 3B 2.0GB ollama run llama3.2
Llama 3.2 1B 1.3GB ollama run llama3.2:1b
Llama 3.2 Vision 11B 7.9GB ollama run llama3.2-vision
Llama 3.2 Vision 90B 55GB ollama run llama3.2-vision:90b
Llama 3.1 8B 4.7GB ollama run llama3.1
Llama 3.1 405B 231GB ollama run llama3.1:405b
Phi 4 14B 9.1GB ollama run phi4
Phi 4 Mini 3.8B 2.5GB ollama run phi4-mini
Gemma 2 2B 1.6GB ollama run gemma2:2b
Gemma 2 9B 5.5GB ollama run gemma2
Gemma 2 27B 16GB ollama run gemma2:27b
Mistral 7B 4.1GB ollama run mistral
Moondream 2 1.4B 829MB ollama run moondream
Neural Chat 7B 4.1GB ollama run neural-chat
Starling 7B 4.1GB ollama run starling-lm
Code Llama 7B 3.8GB ollama run codellama
Llama 2 Uncensored 7B 3.8GB ollama run llama2-uncensored
LLaVA 7B 4.5GB ollama run llava
Granite-3.2 8B 4.9GB ollama run granite3.2

[!NOTE] You should have at least 8 GB of RAM available to run the 7B models, 16 GB to run the 13B models, and 32 GB to run the 33B models.

Customize a model

Import from GGUF

Ollama supports importing GGUF models in the Modelfile:

  1. Create a file named Modelfile, with a FROM instruction with the local filepath to the model you want to import.

    FROM ./vicuna-33b.Q4_0.gguf
    
  2. Create the model in Ollama

    ollama create example -f Modelfile
    
  3. Run the model

    ollama run example
    

Import from Safetensors

See the guide on importing models for more information.

Customize a prompt

Models from the Ollama library can be customized with a prompt. For example, to customize the llama3.2 model:

ollama pull llama3.2

Create a Modelfile:

FROM llama3.2

# set the temperature to 1 [higher is more creative, lower is more coherent]
PARAMETER temperature 1

# set the system message
SYSTEM """
You are Mario from Super Mario Bros. Answer as Mario, the assistant, only.
"""

Next, create and run the model:

ollama create mario -f ./Modelfile
ollama run mario
>>> hi
Hello! It's your friend Mario.

For more information on working with a Modelfile, see the Modelfile documentation.

CLI Reference

Create a model

ollama create is used to create a model from a Modelfile.

ollama create mymodel -f ./Modelfile

Pull a model

ollama pull llama3.2

This command can also be used to update a local model. Only the diff will be pulled.

Remove a model

ollama rm llama3.2

Copy a model

ollama cp llama3.2 my-model

Multiline input

For multiline input, you can wrap text with """:

>>> """Hello,
... world!
... """
I'm a basic program that prints the famous "Hello, world!" message to the console.

Multimodal models

ollama run llava "What's in this image? /Users/jmorgan/Desktop/smile.png"

Output: The image features a yellow smiley face, which is likely the central focus of the picture.

Pass the prompt as an argument

ollama run llama3.2 "Summarize this file: $(cat README.md)"

Output: Ollama is a lightweight, extensible framework for building and running language models on the local machine. It provides a simple API for creating, running, and managing models, as well as a library of pre-built models that can be easily used in a variety of applications.

Show model information

ollama show llama3.2

List models on your computer

ollama list

List which models are currently loaded

ollama ps

Stop a model which is currently running

ollama stop llama3.2

Start Ollama

ollama serve is used when you want to start ollama without running the desktop application.

Building

See the developer guide

Running local builds

Next, start the server:

./ollama serve

Finally, in a separate shell, run a model:

./ollama run llama3.2

REST API

Ollama has a REST API for running and managing models.

Generate a response

curl http://localhost:11434/api/generate -d '{
  "model": "llama3.2",
  "prompt":"Why is the sky blue?"
}'

Chat with a model

curl http://localhost:11434/api/chat -d '{
  "model": "llama3.2",
  "messages": [
    { "role": "user", "content": "why is the sky blue?" }
  ]
}'

See the API documentation for all endpoints.

Community Integrations

Web & Desktop

Cloud

Terminal

Apple Vision Pro

  • SwiftChat (Cross-platform AI chat app supporting Apple Vision Pro via "Designed for iPad")
  • Enchanted

Database

  • pgai - PostgreSQL as a vector database (Create and search embeddings from Ollama models using pgvector)
  • MindsDB (Connects Ollama models with nearly 200 data platforms and apps)
  • chromem-go with example
  • Kangaroo (AI-powered SQL client and admin tool for popular databases)

Package managers

Libraries

Mobile

  • SwiftChat (Lightning-fast Cross-platform AI chat app with native UI for Android, iOS and iPad)
  • Enchanted
  • Maid
  • Ollama App (Modern and easy-to-use multi-platform client for Ollama)
  • ConfiChat (Lightweight, standalone, multi-platform, and privacy focused LLM chat interface with optional encryption)
  • Ollama Android Chat (No need for Termux, start the Ollama service with one click on an Android device)
  • Reins (Easily tweak parameters, customize system prompts per chat, and enhance your AI experiments with reasoning model support.)

Extensions & Plugins

Supported backends

  • llama.cpp project founded by Georgi Gerganov.

Observability

  • Opik is an open-source platform to debug, evaluate, and monitor your LLM applications, RAG systems, and agentic workflows with comprehensive tracing, automated evaluations, and production-ready dashboards. Opik supports native intergration to Ollama.
  • Lunary is the leading open-source LLM observability platform. It provides a variety of enterprise-grade features such as real-time analytics, prompt templates management, PII masking, and comprehensive agent tracing.
  • OpenLIT is an OpenTelemetry-native tool for monitoring Ollama Applications & GPUs using traces and metrics.
  • HoneyHive is an AI observability and evaluation platform for AI agents. Use HoneyHive to evaluate agent performance, interrogate failures, and monitor quality in production.
  • Langfuse is an open source LLM observability platform that enables teams to collaboratively monitor, evaluate and debug AI applications.
  • MLflow Tracing is an open source LLM observability tool with a convenient API to log and visualize traces, making it easy to debug and evaluate GenAI applications.