|
@@ -18,8 +18,6 @@ from langchain.retrievers import (
|
|
|
EnsembleRetriever,
|
|
|
)
|
|
|
|
|
|
-from sentence_transformers import CrossEncoder
|
|
|
-
|
|
|
from typing import Optional
|
|
|
from config import SRC_LOG_LEVELS, CHROMA_CLIENT
|
|
|
|
|
@@ -34,14 +32,13 @@ def query_embeddings_doc(
|
|
|
embeddings_function,
|
|
|
reranking_function,
|
|
|
k: int,
|
|
|
- r: Optional[float] = None,
|
|
|
- hybrid: Optional[bool] = False,
|
|
|
+ r: int,
|
|
|
+ hybrid: bool,
|
|
|
):
|
|
|
try:
|
|
|
- if hybrid:
|
|
|
- # if you use docker use the model from the environment variable
|
|
|
- collection = CHROMA_CLIENT.get_collection(name=collection_name)
|
|
|
+ collection = CHROMA_CLIENT.get_collection(name=collection_name)
|
|
|
|
|
|
+ if hybrid:
|
|
|
documents = collection.get() # get all documents
|
|
|
bm25_retriever = BM25Retriever.from_texts(
|
|
|
texts=documents.get("documents"),
|
|
@@ -77,24 +74,19 @@ def query_embeddings_doc(
|
|
|
"metadatas": [[d.metadata for d in result]],
|
|
|
}
|
|
|
else:
|
|
|
- # if you use docker use the model from the environment variable
|
|
|
query_embeddings = embeddings_function(query)
|
|
|
-
|
|
|
- log.info(f"query_embeddings_doc {query_embeddings}")
|
|
|
- collection = CHROMA_CLIENT.get_collection(name=collection_name)
|
|
|
-
|
|
|
result = collection.query(
|
|
|
query_embeddings=[query_embeddings],
|
|
|
n_results=k,
|
|
|
)
|
|
|
|
|
|
- log.info(f"query_embeddings_doc:result {result}")
|
|
|
+ log.info(f"query_embeddings_doc:result {result}")
|
|
|
return result
|
|
|
except Exception as e:
|
|
|
raise e
|
|
|
|
|
|
|
|
|
-def merge_and_sort_query_results(query_results, k):
|
|
|
+def merge_and_sort_query_results(query_results, k, reverse=False):
|
|
|
# Initialize lists to store combined data
|
|
|
combined_distances = []
|
|
|
combined_documents = []
|
|
@@ -109,7 +101,7 @@ def merge_and_sort_query_results(query_results, k):
|
|
|
combined = list(zip(combined_distances, combined_documents, combined_metadatas))
|
|
|
|
|
|
# Sort the list based on distances
|
|
|
- combined.sort(key=lambda x: x[0])
|
|
|
+ combined.sort(key=lambda x: x[0], reverse=reverse)
|
|
|
|
|
|
# We don't have anything :-(
|
|
|
if not combined:
|
|
@@ -162,7 +154,8 @@ def query_embeddings_collection(
|
|
|
except:
|
|
|
pass
|
|
|
|
|
|
- return merge_and_sort_query_results(results, k)
|
|
|
+ reverse = hybrid and reranking_function is not None
|
|
|
+ return merge_and_sort_query_results(results, k=k, reverse=reverse)
|
|
|
|
|
|
|
|
|
def rag_template(template: str, context: str, query: str):
|
|
@@ -484,7 +477,9 @@ class RerankCompressor(BaseDocumentCompressor):
|
|
|
(d, s) for d, s in docs_with_scores if s >= self.r_score
|
|
|
]
|
|
|
|
|
|
- result = sorted(docs_with_scores, key=operator.itemgetter(1), reverse=True)
|
|
|
+ reverse = self.reranking_function is not None
|
|
|
+ result = sorted(docs_with_scores, key=operator.itemgetter(1), reverse=reverse)
|
|
|
+
|
|
|
final_results = []
|
|
|
for doc, doc_score in result[: self.top_n]:
|
|
|
metadata = doc.metadata
|