|
@@ -316,7 +316,7 @@ async def get_function_call_response(
|
|
|
|
|
|
class ChatCompletionMiddleware(BaseHTTPMiddleware):
|
|
|
async def dispatch(self, request: Request, call_next):
|
|
|
- return_citations = False
|
|
|
+ data_items = []
|
|
|
|
|
|
if request.method == "POST" and (
|
|
|
"/ollama/api/chat" in request.url.path
|
|
@@ -326,23 +326,17 @@ class ChatCompletionMiddleware(BaseHTTPMiddleware):
|
|
|
|
|
|
# Read the original request body
|
|
|
body = await request.body()
|
|
|
- # Decode body to string
|
|
|
body_str = body.decode("utf-8")
|
|
|
- # Parse string to JSON
|
|
|
data = json.loads(body_str) if body_str else {}
|
|
|
|
|
|
+ model_id = data["model"]
|
|
|
user = get_current_user(
|
|
|
request,
|
|
|
get_http_authorization_cred(request.headers.get("Authorization")),
|
|
|
)
|
|
|
|
|
|
- # Remove the citations from the body
|
|
|
- return_citations = data.get("citations", False)
|
|
|
- if "citations" in data:
|
|
|
- del data["citations"]
|
|
|
-
|
|
|
# Set the task model
|
|
|
- task_model_id = data["model"]
|
|
|
+ task_model_id = model_id
|
|
|
if task_model_id not in app.state.MODELS:
|
|
|
raise HTTPException(
|
|
|
status_code=status.HTTP_404_NOT_FOUND,
|
|
@@ -364,12 +358,11 @@ class ChatCompletionMiddleware(BaseHTTPMiddleware):
|
|
|
):
|
|
|
task_model_id = app.state.config.TASK_MODEL_EXTERNAL
|
|
|
|
|
|
+ skip_files = False
|
|
|
prompt = get_last_user_message(data["messages"])
|
|
|
context = ""
|
|
|
|
|
|
# If tool_ids field is present, call the functions
|
|
|
-
|
|
|
- skip_files = False
|
|
|
if "tool_ids" in data:
|
|
|
print(data["tool_ids"])
|
|
|
for tool_id in data["tool_ids"]:
|
|
@@ -415,8 +408,9 @@ class ChatCompletionMiddleware(BaseHTTPMiddleware):
|
|
|
context += ("\n" if context != "" else "") + rag_context
|
|
|
|
|
|
log.debug(f"rag_context: {rag_context}, citations: {citations}")
|
|
|
- else:
|
|
|
- return_citations = False
|
|
|
+
|
|
|
+ if citations:
|
|
|
+ data_items.append({"citations": citations})
|
|
|
|
|
|
del data["files"]
|
|
|
|
|
@@ -426,7 +420,7 @@ class ChatCompletionMiddleware(BaseHTTPMiddleware):
|
|
|
)
|
|
|
print(system_prompt)
|
|
|
data["messages"] = add_or_update_system_message(
|
|
|
- f"\n{system_prompt}", data["messages"]
|
|
|
+ system_prompt, data["messages"]
|
|
|
)
|
|
|
|
|
|
modified_body_bytes = json.dumps(data).encode("utf-8")
|
|
@@ -444,18 +438,18 @@ class ChatCompletionMiddleware(BaseHTTPMiddleware):
|
|
|
|
|
|
response = await call_next(request)
|
|
|
|
|
|
- if return_citations:
|
|
|
- # Inject the citations into the response
|
|
|
+ # If there are data_items to inject into the response
|
|
|
+ if len(data_items) > 0:
|
|
|
if isinstance(response, StreamingResponse):
|
|
|
# If it's a streaming response, inject it as SSE event or NDJSON line
|
|
|
content_type = response.headers.get("Content-Type")
|
|
|
if "text/event-stream" in content_type:
|
|
|
return StreamingResponse(
|
|
|
- self.openai_stream_wrapper(response.body_iterator, citations),
|
|
|
+ self.openai_stream_wrapper(response.body_iterator, data_items),
|
|
|
)
|
|
|
if "application/x-ndjson" in content_type:
|
|
|
return StreamingResponse(
|
|
|
- self.ollama_stream_wrapper(response.body_iterator, citations),
|
|
|
+ self.ollama_stream_wrapper(response.body_iterator, data_items),
|
|
|
)
|
|
|
|
|
|
return response
|
|
@@ -463,13 +457,17 @@ class ChatCompletionMiddleware(BaseHTTPMiddleware):
|
|
|
async def _receive(self, body: bytes):
|
|
|
return {"type": "http.request", "body": body, "more_body": False}
|
|
|
|
|
|
- async def openai_stream_wrapper(self, original_generator, citations):
|
|
|
- yield f"data: {json.dumps({'citations': citations})}\n\n"
|
|
|
+ async def openai_stream_wrapper(self, original_generator, data_items):
|
|
|
+ for item in data_items:
|
|
|
+ yield f"data: {json.dumps(item)}\n\n"
|
|
|
+
|
|
|
async for data in original_generator:
|
|
|
yield data
|
|
|
|
|
|
- async def ollama_stream_wrapper(self, original_generator, citations):
|
|
|
- yield f"{json.dumps({'citations': citations})}\n"
|
|
|
+ async def ollama_stream_wrapper(self, original_generator, data_items):
|
|
|
+ for item in data_items:
|
|
|
+ yield f"{json.dumps(item)}\n"
|
|
|
+
|
|
|
async for data in original_generator:
|
|
|
yield data
|
|
|
|