|
@@ -96,8 +96,8 @@ app.state.RAG_EMBEDDING_ENGINE = RAG_EMBEDDING_ENGINE
|
|
|
app.state.RAG_EMBEDDING_MODEL = RAG_EMBEDDING_MODEL
|
|
|
app.state.RAG_TEMPLATE = RAG_TEMPLATE
|
|
|
|
|
|
-app.state.RAG_OPENAI_API_BASE_URL = RAG_OPENAI_API_BASE_URL
|
|
|
-app.state.RAG_OPENAI_API_KEY = RAG_OPENAI_API_KEY
|
|
|
+app.state.OPENAI_API_BASE_URL = RAG_OPENAI_API_BASE_URL
|
|
|
+app.state.OPENAI_API_KEY = RAG_OPENAI_API_KEY
|
|
|
|
|
|
app.state.PDF_EXTRACT_IMAGES = False
|
|
|
|
|
@@ -150,8 +150,8 @@ async def get_embedding_config(user=Depends(get_admin_user)):
|
|
|
"embedding_engine": app.state.RAG_EMBEDDING_ENGINE,
|
|
|
"embedding_model": app.state.RAG_EMBEDDING_MODEL,
|
|
|
"openai_config": {
|
|
|
- "url": app.state.RAG_OPENAI_API_BASE_URL,
|
|
|
- "key": app.state.RAG_OPENAI_API_KEY,
|
|
|
+ "url": app.state.OPENAI_API_BASE_URL,
|
|
|
+ "key": app.state.OPENAI_API_KEY,
|
|
|
},
|
|
|
}
|
|
|
|
|
@@ -182,8 +182,8 @@ async def update_embedding_config(
|
|
|
app.state.sentence_transformer_ef = None
|
|
|
|
|
|
if form_data.openai_config != None:
|
|
|
- app.state.RAG_OPENAI_API_BASE_URL = form_data.openai_config.url
|
|
|
- app.state.RAG_OPENAI_API_KEY = form_data.openai_config.key
|
|
|
+ app.state.OPENAI_API_BASE_URL = form_data.openai_config.url
|
|
|
+ app.state.OPENAI_API_KEY = form_data.openai_config.key
|
|
|
else:
|
|
|
sentence_transformer_ef = (
|
|
|
embedding_functions.SentenceTransformerEmbeddingFunction(
|
|
@@ -201,8 +201,8 @@ async def update_embedding_config(
|
|
|
"embedding_engine": app.state.RAG_EMBEDDING_ENGINE,
|
|
|
"embedding_model": app.state.RAG_EMBEDDING_MODEL,
|
|
|
"openai_config": {
|
|
|
- "url": app.state.RAG_OPENAI_API_BASE_URL,
|
|
|
- "key": app.state.RAG_OPENAI_API_KEY,
|
|
|
+ "url": app.state.OPENAI_API_BASE_URL,
|
|
|
+ "key": app.state.OPENAI_API_KEY,
|
|
|
},
|
|
|
}
|
|
|
|
|
@@ -317,8 +317,8 @@ def query_doc_handler(
|
|
|
query_embeddings = generate_openai_embeddings(
|
|
|
model=app.state.RAG_EMBEDDING_MODEL,
|
|
|
text=form_data.query,
|
|
|
- key=app.state.RAG_OPENAI_API_KEY,
|
|
|
- url=app.state.RAG_OPENAI_API_BASE_URL,
|
|
|
+ key=app.state.OPENAI_API_KEY,
|
|
|
+ url=app.state.OPENAI_API_BASE_URL,
|
|
|
)
|
|
|
|
|
|
return query_embeddings_doc(
|
|
@@ -369,8 +369,8 @@ def query_collection_handler(
|
|
|
query_embeddings = generate_openai_embeddings(
|
|
|
model=app.state.RAG_EMBEDDING_MODEL,
|
|
|
text=form_data.query,
|
|
|
- key=app.state.RAG_OPENAI_API_KEY,
|
|
|
- url=app.state.RAG_OPENAI_API_BASE_URL,
|
|
|
+ key=app.state.OPENAI_API_KEY,
|
|
|
+ url=app.state.OPENAI_API_BASE_URL,
|
|
|
)
|
|
|
|
|
|
return query_embeddings_collection(
|
|
@@ -486,8 +486,8 @@ def store_docs_in_vector_db(docs, collection_name, overwrite: bool = False) -> b
|
|
|
generate_openai_embeddings(
|
|
|
model=app.state.RAG_EMBEDDING_MODEL,
|
|
|
text=text,
|
|
|
- key=app.state.RAG_OPENAI_API_KEY,
|
|
|
- url=app.state.RAG_OPENAI_API_BASE_URL,
|
|
|
+ key=app.state.OPENAI_API_KEY,
|
|
|
+ url=app.state.OPENAI_API_BASE_URL,
|
|
|
)
|
|
|
for text in texts
|
|
|
]
|