|
@@ -0,0 +1,104 @@
|
|
|
+from pydantic import BaseModel, Field, create_model
|
|
|
+from typing import Any, Optional, Type
|
|
|
+
|
|
|
+
|
|
|
+def json_schema_to_model(tool_dict: dict[str, Any]) -> Type[BaseModel]:
|
|
|
+ """
|
|
|
+ Converts a JSON schema to a Pydantic BaseModel class.
|
|
|
+
|
|
|
+ Args:
|
|
|
+ json_schema: The JSON schema to convert.
|
|
|
+
|
|
|
+ Returns:
|
|
|
+ A Pydantic BaseModel class.
|
|
|
+ """
|
|
|
+
|
|
|
+ # Extract the model name from the schema title.
|
|
|
+ model_name = tool_dict["name"]
|
|
|
+ schema = tool_dict["parameters"]
|
|
|
+
|
|
|
+ # Extract the field definitions from the schema properties.
|
|
|
+ field_definitions = {
|
|
|
+ name: json_schema_to_pydantic_field(name, prop, schema.get("required", []))
|
|
|
+ for name, prop in schema.get("properties", {}).items()
|
|
|
+ }
|
|
|
+
|
|
|
+ # Create the BaseModel class using create_model().
|
|
|
+ return create_model(model_name, **field_definitions)
|
|
|
+
|
|
|
+
|
|
|
+def json_schema_to_pydantic_field(
|
|
|
+ name: str, json_schema: dict[str, Any], required: list[str]
|
|
|
+) -> Any:
|
|
|
+ """
|
|
|
+ Converts a JSON schema property to a Pydantic field definition.
|
|
|
+
|
|
|
+ Args:
|
|
|
+ name: The field name.
|
|
|
+ json_schema: The JSON schema property.
|
|
|
+
|
|
|
+ Returns:
|
|
|
+ A Pydantic field definition.
|
|
|
+ """
|
|
|
+
|
|
|
+ # Get the field type.
|
|
|
+ type_ = json_schema_to_pydantic_type(json_schema)
|
|
|
+
|
|
|
+ # Get the field description.
|
|
|
+ description = json_schema.get("description")
|
|
|
+
|
|
|
+ # Get the field examples.
|
|
|
+ examples = json_schema.get("examples")
|
|
|
+
|
|
|
+ # Create a Field object with the type, description, and examples.
|
|
|
+ # The 'required' flag will be set later when creating the model.
|
|
|
+ return (
|
|
|
+ type_,
|
|
|
+ Field(
|
|
|
+ description=description,
|
|
|
+ examples=examples,
|
|
|
+ default=... if name in required else None,
|
|
|
+ ),
|
|
|
+ )
|
|
|
+
|
|
|
+
|
|
|
+def json_schema_to_pydantic_type(json_schema: dict[str, Any]) -> Any:
|
|
|
+ """
|
|
|
+ Converts a JSON schema type to a Pydantic type.
|
|
|
+
|
|
|
+ Args:
|
|
|
+ json_schema: The JSON schema to convert.
|
|
|
+
|
|
|
+ Returns:
|
|
|
+ A Pydantic type.
|
|
|
+ """
|
|
|
+
|
|
|
+ type_ = json_schema.get("type")
|
|
|
+
|
|
|
+ if type_ == "string" or type_ == "str":
|
|
|
+ return str
|
|
|
+ elif type_ == "integer" or type_ == "int":
|
|
|
+ return int
|
|
|
+ elif type_ == "number" or type_ == "float":
|
|
|
+ return float
|
|
|
+ elif type_ == "boolean" or type_ == "bool":
|
|
|
+ return bool
|
|
|
+ elif type_ == "array":
|
|
|
+ items_schema = json_schema.get("items")
|
|
|
+ if items_schema:
|
|
|
+ item_type = json_schema_to_pydantic_type(items_schema)
|
|
|
+ return list[item_type]
|
|
|
+ else:
|
|
|
+ return list
|
|
|
+ elif type_ == "object":
|
|
|
+ # Handle nested models.
|
|
|
+ properties = json_schema.get("properties")
|
|
|
+ if properties:
|
|
|
+ nested_model = json_schema_to_model(json_schema)
|
|
|
+ return nested_model
|
|
|
+ else:
|
|
|
+ return dict
|
|
|
+ elif type_ == "null":
|
|
|
+ return Optional[Any] # Use Optional[Any] for nullable fields
|
|
|
+ else:
|
|
|
+ raise ValueError(f"Unsupported JSON schema type: {type_}")
|