|
@@ -1,8 +1,5 @@
|
|
|
import logging
|
|
|
import requests
|
|
|
-import operator
|
|
|
-
|
|
|
-import sentence_transformers
|
|
|
|
|
|
from typing import List
|
|
|
|
|
@@ -11,8 +8,10 @@ from apps.ollama.main import (
|
|
|
GenerateEmbeddingsForm,
|
|
|
)
|
|
|
|
|
|
+from langchain_core.documents import Document
|
|
|
+from langchain_community.retrievers import BM25Retriever
|
|
|
from langchain.retrievers import (
|
|
|
- BM25Retriever,
|
|
|
+ ContextualCompressionRetriever,
|
|
|
EnsembleRetriever,
|
|
|
)
|
|
|
|
|
@@ -27,6 +26,7 @@ def query_embeddings_doc(
|
|
|
collection_name: str,
|
|
|
query: str,
|
|
|
k: int,
|
|
|
+ r: float,
|
|
|
embeddings_function,
|
|
|
reranking_function,
|
|
|
):
|
|
@@ -34,38 +34,39 @@ def query_embeddings_doc(
|
|
|
# if you use docker use the model from the environment variable
|
|
|
collection = CHROMA_CLIENT.get_collection(name=collection_name)
|
|
|
|
|
|
- # keyword search
|
|
|
- documents = collection.get() # get all documents
|
|
|
+ documents = collection.get() # get all documents
|
|
|
bm25_retriever = BM25Retriever.from_texts(
|
|
|
texts=documents.get("documents"),
|
|
|
metadatas=documents.get("metadatas"),
|
|
|
)
|
|
|
bm25_retriever.k = k
|
|
|
|
|
|
- # semantic search (vector)
|
|
|
chroma_retriever = ChromaRetriever(
|
|
|
collection=collection,
|
|
|
- k=k,
|
|
|
embeddings_function=embeddings_function,
|
|
|
+ top_n=k,
|
|
|
)
|
|
|
|
|
|
- # hybrid search (ensemble)
|
|
|
ensemble_retriever = EnsembleRetriever(
|
|
|
- retrievers=[bm25_retriever, chroma_retriever],
|
|
|
- weights=[0.6, 0.4]
|
|
|
+ retrievers=[bm25_retriever, chroma_retriever], weights=[0.5, 0.5]
|
|
|
)
|
|
|
|
|
|
- documents = ensemble_retriever.invoke(query)
|
|
|
- result = query_results_rank(
|
|
|
- query=query,
|
|
|
- documents=documents,
|
|
|
- k=k,
|
|
|
+ compressor = RerankCompressor(
|
|
|
+ embeddings_function=embeddings_function,
|
|
|
reranking_function=reranking_function,
|
|
|
+ r_score=r,
|
|
|
+ top_n=k,
|
|
|
)
|
|
|
+
|
|
|
+ compression_retriever = ContextualCompressionRetriever(
|
|
|
+ base_compressor=compressor, base_retriever=ensemble_retriever
|
|
|
+ )
|
|
|
+
|
|
|
+ result = compression_retriever.invoke(query)
|
|
|
result = {
|
|
|
- "distances": [[d[1].item() for d in result]],
|
|
|
- "documents": [[d[0].page_content for d in result]],
|
|
|
- "metadatas": [[d[0].metadata for d in result]],
|
|
|
+ "distances": [[d.metadata.get("score") for d in result]],
|
|
|
+ "documents": [[d.page_content for d in result]],
|
|
|
+ "metadatas": [[d.metadata for d in result]],
|
|
|
}
|
|
|
|
|
|
return result
|
|
@@ -73,58 +74,52 @@ def query_embeddings_doc(
|
|
|
raise e
|
|
|
|
|
|
|
|
|
-def query_results_rank(query: str, documents, k: int, reranking_function):
|
|
|
- scores = reranking_function.predict([(query, doc.page_content) for doc in documents])
|
|
|
- docs_with_scores = list(zip(documents, scores))
|
|
|
- result = sorted(docs_with_scores, key=operator.itemgetter(1), reverse=True)
|
|
|
- return result[: k]
|
|
|
-
|
|
|
-
|
|
|
def merge_and_sort_query_results(query_results, k):
|
|
|
# Initialize lists to store combined data
|
|
|
combined_distances = []
|
|
|
combined_documents = []
|
|
|
combined_metadatas = []
|
|
|
|
|
|
- # Combine data from each dictionary
|
|
|
for data in query_results:
|
|
|
combined_distances.extend(data["distances"][0])
|
|
|
combined_documents.extend(data["documents"][0])
|
|
|
combined_metadatas.extend(data["metadatas"][0])
|
|
|
|
|
|
# Create a list of tuples (distance, document, metadata)
|
|
|
- combined = list(
|
|
|
- zip(combined_distances, combined_documents, combined_metadatas)
|
|
|
- )
|
|
|
+ combined = list(zip(combined_distances, combined_documents, combined_metadatas))
|
|
|
|
|
|
# Sort the list based on distances
|
|
|
combined.sort(key=lambda x: x[0])
|
|
|
|
|
|
- # Unzip the sorted list
|
|
|
- sorted_distances, sorted_documents, sorted_metadatas = zip(*combined)
|
|
|
+ # We don't have anything :-(
|
|
|
+ if not combined:
|
|
|
+ sorted_distances = []
|
|
|
+ sorted_documents = []
|
|
|
+ sorted_metadatas = []
|
|
|
+ else:
|
|
|
+ # Unzip the sorted list
|
|
|
+ sorted_distances, sorted_documents, sorted_metadatas = zip(*combined)
|
|
|
|
|
|
- # Slicing the lists to include only k elements
|
|
|
- sorted_distances = list(sorted_distances)[:k]
|
|
|
- sorted_documents = list(sorted_documents)[:k]
|
|
|
- sorted_metadatas = list(sorted_metadatas)[:k]
|
|
|
+ # Slicing the lists to include only k elements
|
|
|
+ sorted_distances = list(sorted_distances)[:k]
|
|
|
+ sorted_documents = list(sorted_documents)[:k]
|
|
|
+ sorted_metadatas = list(sorted_metadatas)[:k]
|
|
|
|
|
|
# Create the output dictionary
|
|
|
- merged_query_results = {
|
|
|
+ result = {
|
|
|
"distances": [sorted_distances],
|
|
|
"documents": [sorted_documents],
|
|
|
"metadatas": [sorted_metadatas],
|
|
|
- "embeddings": None,
|
|
|
- "uris": None,
|
|
|
- "data": None,
|
|
|
}
|
|
|
|
|
|
- return merged_query_results
|
|
|
+ return result
|
|
|
|
|
|
|
|
|
def query_embeddings_collection(
|
|
|
collection_names: List[str],
|
|
|
query: str,
|
|
|
k: int,
|
|
|
+ r: float,
|
|
|
embeddings_function,
|
|
|
reranking_function,
|
|
|
):
|
|
@@ -137,6 +132,7 @@ def query_embeddings_collection(
|
|
|
collection_name=collection_name,
|
|
|
query=query,
|
|
|
k=k,
|
|
|
+ r=r,
|
|
|
embeddings_function=embeddings_function,
|
|
|
reranking_function=reranking_function,
|
|
|
)
|
|
@@ -162,22 +158,31 @@ def query_embeddings_function(
|
|
|
):
|
|
|
if embedding_engine == "":
|
|
|
return lambda query: embedding_function.encode(query).tolist()
|
|
|
- elif embedding_engine == "ollama":
|
|
|
- return lambda query: generate_ollama_embeddings(
|
|
|
- GenerateEmbeddingsForm(
|
|
|
- **{
|
|
|
- "model": embedding_model,
|
|
|
- "prompt": query,
|
|
|
- }
|
|
|
+ elif embedding_engine in ["ollama", "openai"]:
|
|
|
+ if embedding_engine == "ollama":
|
|
|
+ func = lambda query: generate_ollama_embeddings(
|
|
|
+ GenerateEmbeddingsForm(
|
|
|
+ **{
|
|
|
+ "model": embedding_model,
|
|
|
+ "prompt": query,
|
|
|
+ }
|
|
|
+ )
|
|
|
)
|
|
|
- )
|
|
|
- elif embedding_engine == "openai":
|
|
|
- return lambda query: generate_openai_embeddings(
|
|
|
- model=embedding_model,
|
|
|
- text=query,
|
|
|
- key=openai_key,
|
|
|
- url=openai_url,
|
|
|
- )
|
|
|
+ elif embedding_engine == "openai":
|
|
|
+ func = lambda query: generate_openai_embeddings(
|
|
|
+ model=embedding_model,
|
|
|
+ text=query,
|
|
|
+ key=openai_key,
|
|
|
+ url=openai_url,
|
|
|
+ )
|
|
|
+
|
|
|
+ def generate_multiple(query, f):
|
|
|
+ if isinstance(query, list):
|
|
|
+ return [f(q) for q in query]
|
|
|
+ else:
|
|
|
+ return f(query)
|
|
|
+
|
|
|
+ return lambda query: generate_multiple(query, func)
|
|
|
|
|
|
|
|
|
def rag_messages(
|
|
@@ -185,6 +190,7 @@ def rag_messages(
|
|
|
messages,
|
|
|
template,
|
|
|
k,
|
|
|
+ r,
|
|
|
embedding_engine,
|
|
|
embedding_model,
|
|
|
embedding_function,
|
|
@@ -221,53 +227,68 @@ def rag_messages(
|
|
|
content_type = None
|
|
|
query = ""
|
|
|
|
|
|
+ embeddings_function = query_embeddings_function(
|
|
|
+ embedding_engine,
|
|
|
+ embedding_model,
|
|
|
+ embedding_function,
|
|
|
+ openai_key,
|
|
|
+ openai_url,
|
|
|
+ )
|
|
|
+
|
|
|
+ extracted_collections = []
|
|
|
relevant_contexts = []
|
|
|
|
|
|
for doc in docs:
|
|
|
context = None
|
|
|
|
|
|
- try:
|
|
|
+ collection = doc.get("collection_name")
|
|
|
+ if collection:
|
|
|
+ collection = [collection]
|
|
|
+ else:
|
|
|
+ collection = doc.get("collection_names", [])
|
|
|
+
|
|
|
+ collection = set(collection).difference(extracted_collections)
|
|
|
+ if not collection:
|
|
|
+ log.debug(f"skipping {doc} as it has already been extracted")
|
|
|
+ continue
|
|
|
|
|
|
+ try:
|
|
|
if doc["type"] == "text":
|
|
|
context = doc["content"]
|
|
|
+ elif doc["type"] == "collection":
|
|
|
+ context = query_embeddings_collection(
|
|
|
+ collection_names=doc["collection_names"],
|
|
|
+ query=query,
|
|
|
+ k=k,
|
|
|
+ r=r,
|
|
|
+ embeddings_function=embeddings_function,
|
|
|
+ reranking_function=reranking_function,
|
|
|
+ )
|
|
|
else:
|
|
|
- embeddings_function = query_embeddings_function(
|
|
|
- embedding_engine,
|
|
|
- embedding_model,
|
|
|
- embedding_function,
|
|
|
- openai_key,
|
|
|
- openai_url,
|
|
|
+ context = query_embeddings_doc(
|
|
|
+ collection_name=doc["collection_name"],
|
|
|
+ query=query,
|
|
|
+ k=k,
|
|
|
+ r=r,
|
|
|
+ embeddings_function=embeddings_function,
|
|
|
+ reranking_function=reranking_function,
|
|
|
)
|
|
|
-
|
|
|
- if doc["type"] == "collection":
|
|
|
- context = query_embeddings_collection(
|
|
|
- collection_names=doc["collection_names"],
|
|
|
- query=query,
|
|
|
- k=k,
|
|
|
- embeddings_function=embeddings_function,
|
|
|
- reranking_function=reranking_function,
|
|
|
- )
|
|
|
- else:
|
|
|
- context = query_embeddings_doc(
|
|
|
- collection_name=doc["collection_name"],
|
|
|
- query=query,
|
|
|
- k=k,
|
|
|
- embeddings_function=embeddings_function,
|
|
|
- reranking_function=reranking_function,
|
|
|
- )
|
|
|
-
|
|
|
except Exception as e:
|
|
|
log.exception(e)
|
|
|
context = None
|
|
|
|
|
|
- relevant_contexts.append(context)
|
|
|
+ if context:
|
|
|
+ relevant_contexts.append(context)
|
|
|
+
|
|
|
+ extracted_collections.extend(collection)
|
|
|
|
|
|
log.debug(f"relevant_contexts: {relevant_contexts}")
|
|
|
|
|
|
context_string = ""
|
|
|
for context in relevant_contexts:
|
|
|
- if context:
|
|
|
- context_string += " ".join(context["documents"][0]) + "\n"
|
|
|
+ items = context["documents"][0]
|
|
|
+ context_string += "\n\n".join(items)
|
|
|
+ context_string = context_string.strip()
|
|
|
|
|
|
ra_content = rag_template(
|
|
|
template=template,
|
|
@@ -275,6 +296,8 @@ def rag_messages(
|
|
|
query=query,
|
|
|
)
|
|
|
|
|
|
+ log.debug(f"ra_content: {ra_content}")
|
|
|
+
|
|
|
if content_type == "list":
|
|
|
new_content = []
|
|
|
for content_item in user_message["content"]:
|
|
@@ -321,15 +344,14 @@ def generate_openai_embeddings(
|
|
|
|
|
|
from typing import Any
|
|
|
|
|
|
-from langchain_core.callbacks import CallbackManagerForRetrieverRun
|
|
|
-from langchain_core.documents import Document
|
|
|
from langchain_core.retrievers import BaseRetriever
|
|
|
+from langchain_core.callbacks import CallbackManagerForRetrieverRun
|
|
|
|
|
|
|
|
|
class ChromaRetriever(BaseRetriever):
|
|
|
collection: Any
|
|
|
- k: int
|
|
|
embeddings_function: Any
|
|
|
+ top_n: int
|
|
|
|
|
|
def _get_relevant_documents(
|
|
|
self,
|
|
@@ -341,7 +363,7 @@ class ChromaRetriever(BaseRetriever):
|
|
|
|
|
|
results = self.collection.query(
|
|
|
query_embeddings=[query_embeddings],
|
|
|
- n_results=self.k,
|
|
|
+ n_results=self.top_n,
|
|
|
)
|
|
|
|
|
|
ids = results["ids"][0]
|
|
@@ -355,3 +377,60 @@ class ChromaRetriever(BaseRetriever):
|
|
|
)
|
|
|
for idx in range(len(ids))
|
|
|
]
|
|
|
+
|
|
|
+
|
|
|
+import operator
|
|
|
+
|
|
|
+from typing import Optional, Sequence
|
|
|
+
|
|
|
+from langchain_core.documents import BaseDocumentCompressor, Document
|
|
|
+from langchain_core.callbacks import Callbacks
|
|
|
+from langchain_core.pydantic_v1 import Extra
|
|
|
+
|
|
|
+from sentence_transformers import util
|
|
|
+
|
|
|
+
|
|
|
+class RerankCompressor(BaseDocumentCompressor):
|
|
|
+ embeddings_function: Any
|
|
|
+ reranking_function: Any
|
|
|
+ r_score: float
|
|
|
+ top_n: int
|
|
|
+
|
|
|
+ class Config:
|
|
|
+ extra = Extra.forbid
|
|
|
+ arbitrary_types_allowed = True
|
|
|
+
|
|
|
+ def compress_documents(
|
|
|
+ self,
|
|
|
+ documents: Sequence[Document],
|
|
|
+ query: str,
|
|
|
+ callbacks: Optional[Callbacks] = None,
|
|
|
+ ) -> Sequence[Document]:
|
|
|
+ if self.reranking_function:
|
|
|
+ scores = self.reranking_function.predict(
|
|
|
+ [(query, doc.page_content) for doc in documents]
|
|
|
+ )
|
|
|
+ else:
|
|
|
+ query_embedding = self.embeddings_function(query)
|
|
|
+ document_embedding = self.embeddings_function(
|
|
|
+ [doc.page_content for doc in documents]
|
|
|
+ )
|
|
|
+ scores = util.cos_sim(query_embedding, document_embedding)[0]
|
|
|
+
|
|
|
+ docs_with_scores = list(zip(documents, scores.tolist()))
|
|
|
+ if self.r_score:
|
|
|
+ docs_with_scores = [
|
|
|
+ (d, s) for d, s in docs_with_scores if s >= self.r_score
|
|
|
+ ]
|
|
|
+
|
|
|
+ result = sorted(docs_with_scores, key=operator.itemgetter(1), reverse=True)
|
|
|
+ final_results = []
|
|
|
+ for doc, doc_score in result[: self.top_n]:
|
|
|
+ metadata = doc.metadata
|
|
|
+ metadata["score"] = doc_score
|
|
|
+ doc = Document(
|
|
|
+ page_content=doc.page_content,
|
|
|
+ metadata=metadata,
|
|
|
+ )
|
|
|
+ final_results.append(doc)
|
|
|
+ return final_results
|