Jannik Streidl 1 anno fa
parent
commit
fdef2abdfb
4 ha cambiato i file con 25 aggiunte e 15 eliminazioni
  1. 7 7
      Dockerfile
  2. 1 2
      backend/apps/rag/main.py
  3. 16 5
      backend/config.py
  4. 1 1
      backend/start.sh

+ 7 - 7
Dockerfile

@@ -36,7 +36,10 @@ ARG INCLUDE_OLLAMA
 ## Basis ##
 ## Basis ##
 ENV ENV=prod \
 ENV ENV=prod \
     PORT=8080 \
     PORT=8080 \
-    INCLUDE_OLLAMA_ENV=${INCLUDE_OLLAMA}
+    # pass build args to the build
+    INCLUDE_OLLAMA_DOCKER=${INCLUDE_OLLAMA} \
+    USE_MPS_DOCKER=${USE_MPS} \
+    USE_CUDA_DOCKER=${USE_CUDA}
 
 
 ## Basis URL Config ##
 ## Basis URL Config ##
 ENV OLLAMA_BASE_URL="/ollama" \
 ENV OLLAMA_BASE_URL="/ollama" \
@@ -65,7 +68,7 @@ ENV RAG_EMBEDDING_MODEL="all-MiniLM-L6-v2" \
     # Important:
     # Important:
     #  If you want to use CUDA you need to install the nvidia-container-toolkit (https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html) 
     #  If you want to use CUDA you need to install the nvidia-container-toolkit (https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html) 
     #  you can set this to "cuda" but its recomended to use --build-arg CUDA_ENABLED=true flag when building the image
     #  you can set this to "cuda" but its recomended to use --build-arg CUDA_ENABLED=true flag when building the image
-    RAG_EMBEDDING_MODEL_DEVICE_TYPE="cpu" \
+    # RAG_EMBEDDING_MODEL_DEVICE_TYPE="cpu" \
     DEVICE_COMPUTE_TYPE="int8"
     DEVICE_COMPUTE_TYPE="int8"
 # device type for whisper tts and embbeding models - "cpu" (default), "cuda" (nvidia gpu and CUDA required) or "mps" (apple silicon) - choosing this right can lead to better performance
 # device type for whisper tts and embbeding models - "cpu" (default), "cuda" (nvidia gpu and CUDA required) or "mps" (apple silicon) - choosing this right can lead to better performance
 #### Preloaded models ##########################################################
 #### Preloaded models ##########################################################
@@ -75,21 +78,18 @@ WORKDIR /app/backend
 COPY ./backend/requirements.txt ./requirements.txt
 COPY ./backend/requirements.txt ./requirements.txt
 
 
 RUN if [ "$USE_CUDA" = "true" ]; then \
 RUN if [ "$USE_CUDA" = "true" ]; then \
-        export DEVICE_TYPE="cuda" && \
         pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu117 --no-cache-dir && \
         pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu117 --no-cache-dir && \
         pip3 install -r requirements.txt --no-cache-dir; \
         pip3 install -r requirements.txt --no-cache-dir; \
     elif [ "$USE_MPS" = "true" ]; then \
     elif [ "$USE_MPS" = "true" ]; then \
-        export DEVICE_TYPE="mps" && \
         pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu --no-cache-dir && \
         pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu --no-cache-dir && \
         pip3 install -r requirements.txt --no-cache-dir && \
         pip3 install -r requirements.txt --no-cache-dir && \
         python -c "import os; from faster_whisper import WhisperModel; WhisperModel(os.environ['WHISPER_MODEL'], device='cpu', compute_type='int8', download_root=os.environ['WHISPER_MODEL_DIR'])" && \
         python -c "import os; from faster_whisper import WhisperModel; WhisperModel(os.environ['WHISPER_MODEL'], device='cpu', compute_type='int8', download_root=os.environ['WHISPER_MODEL_DIR'])" && \
-        python -c "import os; from chromadb.utils import embedding_functions; sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFunction(model_name=os.environ['RAG_EMBEDDING_MODEL'], device=os.environ['DEVICE_TYPE'])"; \
+        python -c "import os; from chromadb.utils import embedding_functions; sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFunction(model_name=os.environ['RAG_EMBEDDING_MODEL'], device='mps')"; \
     else \
     else \
-        export DEVICE_TYPE="cpu" && \
         pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu --no-cache-dir && \
         pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu --no-cache-dir && \
         pip3 install -r requirements.txt --no-cache-dir && \
         pip3 install -r requirements.txt --no-cache-dir && \
         python -c "import os; from faster_whisper import WhisperModel; WhisperModel(os.environ['WHISPER_MODEL'], device='cpu', compute_type='int8', download_root=os.environ['WHISPER_MODEL_DIR'])" && \
         python -c "import os; from faster_whisper import WhisperModel; WhisperModel(os.environ['WHISPER_MODEL'], device='cpu', compute_type='int8', download_root=os.environ['WHISPER_MODEL_DIR'])" && \
-        python -c "import os; from chromadb.utils import embedding_functions; sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFunction(model_name=os.environ['RAG_EMBEDDING_MODEL'], device=os.environ['DEVICE_TYPE'])"; \
+        python -c "import os; from chromadb.utils import embedding_functions; sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFunction(model_name=os.environ['RAG_EMBEDDING_MODEL'], device='cpu')"; \
     fi
     fi
 
 
 
 

+ 1 - 2
backend/apps/rag/main.py

@@ -71,7 +71,7 @@ from constants import ERROR_MESSAGES
 #    sentence_transformer_ef = SentenceTransformer(
 #    sentence_transformer_ef = SentenceTransformer(
 #        model_name_or_path=RAG_EMBEDDING_MODEL,
 #        model_name_or_path=RAG_EMBEDDING_MODEL,
 #        cache_folder=RAG_EMBEDDING_MODEL_DIR,
 #        cache_folder=RAG_EMBEDDING_MODEL_DIR,
-#        device=RAG_EMBEDDING_MODEL_DEVICE_TYPE,
+#        device=DEVICE_TYPE,
 #    )
 #    )
 
 
 
 
@@ -178,7 +178,6 @@ async def update_embedding_model(
             device=DEVICE_TYPE,
             device=DEVICE_TYPE,
         )
         )
     )
     )
-
     return {
     return {
         "status": True,
         "status": True,
         "embedding_model": app.state.RAG_EMBEDDING_MODEL,
         "embedding_model": app.state.RAG_EMBEDDING_MODEL,

+ 16 - 5
backend/config.py

@@ -208,7 +208,7 @@ OLLAMA_API_BASE_URL = os.environ.get(
 )
 )
 
 
 OLLAMA_BASE_URL = os.environ.get("OLLAMA_BASE_URL", "")
 OLLAMA_BASE_URL = os.environ.get("OLLAMA_BASE_URL", "")
-INCLUDE_OLLAMA = os.environ.get("INCLUDE_OLLAMA", "false")
+INCLUDE_OLLAMA = os.environ.get("INCLUDE_OLLAMA_ENV", "false")
 
 
 
 
 if OLLAMA_BASE_URL == "" and OLLAMA_API_BASE_URL != "":
 if OLLAMA_BASE_URL == "" and OLLAMA_API_BASE_URL != "":
@@ -220,7 +220,7 @@ if OLLAMA_BASE_URL == "" and OLLAMA_API_BASE_URL != "":
 
 
 if ENV == "prod":
 if ENV == "prod":
     if OLLAMA_BASE_URL == "/ollama":
     if OLLAMA_BASE_URL == "/ollama":
-        if INCLUDE_OLLAMA == "true":
+        if INCLUDE_OLLAMA.lower() == "true":
             # if you use all-in-one docker container (Open WebUI + Ollama) 
             # if you use all-in-one docker container (Open WebUI + Ollama) 
             # with the docker build arg INCLUDE_OLLAMA=true (--build-arg="INCLUDE_OLLAMA=true") this only works with http://localhost:11434
             # with the docker build arg INCLUDE_OLLAMA=true (--build-arg="INCLUDE_OLLAMA=true") this only works with http://localhost:11434
             OLLAMA_BASE_URL = "http://localhost:11434"
             OLLAMA_BASE_URL = "http://localhost:11434"
@@ -336,9 +336,20 @@ CHROMA_DATA_PATH = f"{DATA_DIR}/vector_db"
 # this uses the model defined in the Dockerfile ENV variable. If you dont use docker or docker based deployments such as k8s, the default embedding model will be used (all-MiniLM-L6-v2)
 # this uses the model defined in the Dockerfile ENV variable. If you dont use docker or docker based deployments such as k8s, the default embedding model will be used (all-MiniLM-L6-v2)
 RAG_EMBEDDING_MODEL = os.environ.get("RAG_EMBEDDING_MODEL", "all-MiniLM-L6-v2")
 RAG_EMBEDDING_MODEL = os.environ.get("RAG_EMBEDDING_MODEL", "all-MiniLM-L6-v2")
 # device type ebbeding models - "cpu" (default), "cuda" (nvidia gpu required) or "mps" (apple silicon) - choosing this right can lead to better performance
 # device type ebbeding models - "cpu" (default), "cuda" (nvidia gpu required) or "mps" (apple silicon) - choosing this right can lead to better performance
-DEVICE_TYPE = os.environ.get(
-    "DEVICE_TYPE", "cpu"
-)
+USE_CUDA = os.environ.get("USE_CUDA_DOCKER", "false")
+USE_MPS = os.environ.get("USE_MPS_DOCKER", "false")
+
+if USE_CUDA.lower() == "true" and USE_MPS.lower() == "true":
+    print("Both USE_CUDA and USE_MPS cannot be set to true. Defaulting to CPU.")
+    DEVICE_TYPE = "cpu"
+elif USE_CUDA.lower() == "true":
+    DEVICE_TYPE = "cuda"
+elif USE_MPS.lower() == "true":
+    DEVICE_TYPE = "mps"
+else:
+    DEVICE_TYPE = "cpu"
+
+
 CHROMA_CLIENT = chromadb.PersistentClient(
 CHROMA_CLIENT = chromadb.PersistentClient(
     path=CHROMA_DATA_PATH,
     path=CHROMA_DATA_PATH,
     settings=Settings(allow_reset=True, anonymized_telemetry=False),
     settings=Settings(allow_reset=True, anonymized_telemetry=False),

+ 1 - 1
backend/start.sh

@@ -2,7 +2,7 @@
 
 
 # Get the INCLUDE_OLLAMA_ENV environment variable which is set in the Dockerfile
 # Get the INCLUDE_OLLAMA_ENV environment variable which is set in the Dockerfile
 # This includes the ollama in the image
 # This includes the ollama in the image
-INCLUDE_OLLAMA=${INCLUDE_OLLAMA_ENV:-false}
+INCLUDE_OLLAMA=${INCLUDE_OLLAMA_DOCKER}
 
 
 SCRIPT_DIR=$( cd -- "$( dirname -- "${BASH_SOURCE[0]}" )" &> /dev/null && pwd )
 SCRIPT_DIR=$( cd -- "$( dirname -- "${BASH_SOURCE[0]}" )" &> /dev/null && pwd )
 cd "$SCRIPT_DIR" || exit
 cd "$SCRIPT_DIR" || exit