pandas-2.2.0-cp312-cp312-emscripten_3_1_52_wasm32.whl.metadata 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352
  1. Metadata-Version: 2.1
  2. Name: pandas
  3. Version: 2.2.0
  4. Summary: Powerful data structures for data analysis, time series, and statistics
  5. Home-page: https://pandas.pydata.org
  6. Author-Email: The Pandas Development Team <pandas-dev@python.org>
  7. License: BSD 3-Clause License
  8. Copyright (c) 2008-2011, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
  9. All rights reserved.
  10. Copyright (c) 2011-2023, Open source contributors.
  11. Redistribution and use in source and binary forms, with or without
  12. modification, are permitted provided that the following conditions are met:
  13. * Redistributions of source code must retain the above copyright notice, this
  14. list of conditions and the following disclaimer.
  15. * Redistributions in binary form must reproduce the above copyright notice,
  16. this list of conditions and the following disclaimer in the documentation
  17. and/or other materials provided with the distribution.
  18. * Neither the name of the copyright holder nor the names of its
  19. contributors may be used to endorse or promote products derived from
  20. this software without specific prior written permission.
  21. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  22. AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  23. IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  24. DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
  25. FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  26. DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
  27. SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  28. CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
  29. OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  30. OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  31. Classifier: Development Status :: 5 - Production/Stable
  32. Classifier: Environment :: Console
  33. Classifier: Intended Audience :: Science/Research
  34. Classifier: License :: OSI Approved :: BSD License
  35. Classifier: Operating System :: OS Independent
  36. Classifier: Programming Language :: Cython
  37. Classifier: Programming Language :: Python
  38. Classifier: Programming Language :: Python :: 3
  39. Classifier: Programming Language :: Python :: 3 :: Only
  40. Classifier: Programming Language :: Python :: 3.9
  41. Classifier: Programming Language :: Python :: 3.10
  42. Classifier: Programming Language :: Python :: 3.11
  43. Classifier: Programming Language :: Python :: 3.12
  44. Classifier: Topic :: Scientific/Engineering
  45. Project-URL: Homepage, https://pandas.pydata.org
  46. Project-URL: Documentation, https://pandas.pydata.org/docs/
  47. Project-URL: Repository, https://github.com/pandas-dev/pandas
  48. Requires-Python: >=3.9
  49. Requires-Dist: numpy<2,>=1.22.4; python_version < "3.11"
  50. Requires-Dist: numpy<2,>=1.23.2; python_version == "3.11"
  51. Requires-Dist: numpy<2,>=1.26.0; python_version >= "3.12"
  52. Requires-Dist: python-dateutil>=2.8.2
  53. Requires-Dist: pytz>=2020.1
  54. Requires-Dist: tzdata>=2022.7
  55. Requires-Dist: hypothesis>=6.46.1; extra == "test"
  56. Requires-Dist: pytest>=7.3.2; extra == "test"
  57. Requires-Dist: pytest-xdist>=2.2.0; extra == "test"
  58. Requires-Dist: bottleneck>=1.3.6; extra == "performance"
  59. Requires-Dist: numba>=0.56.4; extra == "performance"
  60. Requires-Dist: numexpr>=2.8.4; extra == "performance"
  61. Requires-Dist: scipy>=1.10.0; extra == "computation"
  62. Requires-Dist: xarray>=2022.12.0; extra == "computation"
  63. Requires-Dist: fsspec>=2022.11.0; extra == "fss"
  64. Requires-Dist: s3fs>=2022.11.0; extra == "aws"
  65. Requires-Dist: gcsfs>=2022.11.0; extra == "gcp"
  66. Requires-Dist: pandas-gbq>=0.19.0; extra == "gcp"
  67. Requires-Dist: odfpy>=1.4.1; extra == "excel"
  68. Requires-Dist: openpyxl>=3.1.0; extra == "excel"
  69. Requires-Dist: python-calamine>=0.1.7; extra == "excel"
  70. Requires-Dist: pyxlsb>=1.0.10; extra == "excel"
  71. Requires-Dist: xlrd>=2.0.1; extra == "excel"
  72. Requires-Dist: xlsxwriter>=3.0.5; extra == "excel"
  73. Requires-Dist: pyarrow>=10.0.1; extra == "parquet"
  74. Requires-Dist: pyarrow>=10.0.1; extra == "feather"
  75. Requires-Dist: tables>=3.8.0; extra == "hdf5"
  76. Requires-Dist: pyreadstat>=1.2.0; extra == "spss"
  77. Requires-Dist: SQLAlchemy>=2.0.0; extra == "postgresql"
  78. Requires-Dist: psycopg2>=2.9.6; extra == "postgresql"
  79. Requires-Dist: adbc-driver-postgresql>=0.8.0; extra == "postgresql"
  80. Requires-Dist: SQLAlchemy>=2.0.0; extra == "mysql"
  81. Requires-Dist: pymysql>=1.0.2; extra == "mysql"
  82. Requires-Dist: SQLAlchemy>=2.0.0; extra == "sql-other"
  83. Requires-Dist: adbc-driver-postgresql>=0.8.0; extra == "sql-other"
  84. Requires-Dist: adbc-driver-sqlite>=0.8.0; extra == "sql-other"
  85. Requires-Dist: beautifulsoup4>=4.11.2; extra == "html"
  86. Requires-Dist: html5lib>=1.1; extra == "html"
  87. Requires-Dist: lxml>=4.9.2; extra == "html"
  88. Requires-Dist: lxml>=4.9.2; extra == "xml"
  89. Requires-Dist: matplotlib>=3.6.3; extra == "plot"
  90. Requires-Dist: jinja2>=3.1.2; extra == "output-formatting"
  91. Requires-Dist: tabulate>=0.9.0; extra == "output-formatting"
  92. Requires-Dist: PyQt5>=5.15.9; extra == "clipboard"
  93. Requires-Dist: qtpy>=2.3.0; extra == "clipboard"
  94. Requires-Dist: zstandard>=0.19.0; extra == "compression"
  95. Requires-Dist: dataframe-api-compat>=0.1.7; extra == "consortium-standard"
  96. Requires-Dist: adbc-driver-postgresql>=0.8.0; extra == "all"
  97. Requires-Dist: adbc-driver-sqlite>=0.8.0; extra == "all"
  98. Requires-Dist: beautifulsoup4>=4.11.2; extra == "all"
  99. Requires-Dist: bottleneck>=1.3.6; extra == "all"
  100. Requires-Dist: dataframe-api-compat>=0.1.7; extra == "all"
  101. Requires-Dist: fastparquet>=2022.12.0; extra == "all"
  102. Requires-Dist: fsspec>=2022.11.0; extra == "all"
  103. Requires-Dist: gcsfs>=2022.11.0; extra == "all"
  104. Requires-Dist: html5lib>=1.1; extra == "all"
  105. Requires-Dist: hypothesis>=6.46.1; extra == "all"
  106. Requires-Dist: jinja2>=3.1.2; extra == "all"
  107. Requires-Dist: lxml>=4.9.2; extra == "all"
  108. Requires-Dist: matplotlib>=3.6.3; extra == "all"
  109. Requires-Dist: numba>=0.56.4; extra == "all"
  110. Requires-Dist: numexpr>=2.8.4; extra == "all"
  111. Requires-Dist: odfpy>=1.4.1; extra == "all"
  112. Requires-Dist: openpyxl>=3.1.0; extra == "all"
  113. Requires-Dist: pandas-gbq>=0.19.0; extra == "all"
  114. Requires-Dist: psycopg2>=2.9.6; extra == "all"
  115. Requires-Dist: pyarrow>=10.0.1; extra == "all"
  116. Requires-Dist: pymysql>=1.0.2; extra == "all"
  117. Requires-Dist: PyQt5>=5.15.9; extra == "all"
  118. Requires-Dist: pyreadstat>=1.2.0; extra == "all"
  119. Requires-Dist: pytest>=7.3.2; extra == "all"
  120. Requires-Dist: pytest-xdist>=2.2.0; extra == "all"
  121. Requires-Dist: python-calamine>=0.1.7; extra == "all"
  122. Requires-Dist: pyxlsb>=1.0.10; extra == "all"
  123. Requires-Dist: qtpy>=2.3.0; extra == "all"
  124. Requires-Dist: scipy>=1.10.0; extra == "all"
  125. Requires-Dist: s3fs>=2022.11.0; extra == "all"
  126. Requires-Dist: SQLAlchemy>=2.0.0; extra == "all"
  127. Requires-Dist: tables>=3.8.0; extra == "all"
  128. Requires-Dist: tabulate>=0.9.0; extra == "all"
  129. Requires-Dist: xarray>=2022.12.0; extra == "all"
  130. Requires-Dist: xlrd>=2.0.1; extra == "all"
  131. Requires-Dist: xlsxwriter>=3.0.5; extra == "all"
  132. Requires-Dist: zstandard>=0.19.0; extra == "all"
  133. Provides-Extra: test
  134. Provides-Extra: performance
  135. Provides-Extra: computation
  136. Provides-Extra: fss
  137. Provides-Extra: aws
  138. Provides-Extra: gcp
  139. Provides-Extra: excel
  140. Provides-Extra: parquet
  141. Provides-Extra: feather
  142. Provides-Extra: hdf5
  143. Provides-Extra: spss
  144. Provides-Extra: postgresql
  145. Provides-Extra: mysql
  146. Provides-Extra: sql-other
  147. Provides-Extra: html
  148. Provides-Extra: xml
  149. Provides-Extra: plot
  150. Provides-Extra: output-formatting
  151. Provides-Extra: clipboard
  152. Provides-Extra: compression
  153. Provides-Extra: consortium-standard
  154. Provides-Extra: all
  155. Description-Content-Type: text/markdown
  156. <div align="center">
  157. <img src="https://pandas.pydata.org/static/img/pandas.svg"><br>
  158. </div>
  159. -----------------
  160. # pandas: powerful Python data analysis toolkit
  161. | | |
  162. | --- | --- |
  163. | Testing | [![CI - Test](https://github.com/pandas-dev/pandas/actions/workflows/unit-tests.yml/badge.svg)](https://github.com/pandas-dev/pandas/actions/workflows/unit-tests.yml) [![Coverage](https://codecov.io/github/pandas-dev/pandas/coverage.svg?branch=main)](https://codecov.io/gh/pandas-dev/pandas) |
  164. | Package | [![PyPI Latest Release](https://img.shields.io/pypi/v/pandas.svg)](https://pypi.org/project/pandas/) [![PyPI Downloads](https://img.shields.io/pypi/dm/pandas.svg?label=PyPI%20downloads)](https://pypi.org/project/pandas/) [![Conda Latest Release](https://anaconda.org/conda-forge/pandas/badges/version.svg)](https://anaconda.org/conda-forge/pandas) [![Conda Downloads](https://img.shields.io/conda/dn/conda-forge/pandas.svg?label=Conda%20downloads)](https://anaconda.org/conda-forge/pandas) |
  165. | Meta | [![Powered by NumFOCUS](https://img.shields.io/badge/powered%20by-NumFOCUS-orange.svg?style=flat&colorA=E1523D&colorB=007D8A)](https://numfocus.org) [![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.3509134.svg)](https://doi.org/10.5281/zenodo.3509134) [![License - BSD 3-Clause](https://img.shields.io/pypi/l/pandas.svg)](https://github.com/pandas-dev/pandas/blob/main/LICENSE) [![Slack](https://img.shields.io/badge/join_Slack-information-brightgreen.svg?logo=slack)](https://pandas.pydata.org/docs/dev/development/community.html?highlight=slack#community-slack) |
  166. ## What is it?
  167. **pandas** is a Python package that provides fast, flexible, and expressive data
  168. structures designed to make working with "relational" or "labeled" data both
  169. easy and intuitive. It aims to be the fundamental high-level building block for
  170. doing practical, **real world** data analysis in Python. Additionally, it has
  171. the broader goal of becoming **the most powerful and flexible open source data
  172. analysis / manipulation tool available in any language**. It is already well on
  173. its way towards this goal.
  174. ## Table of Contents
  175. - [Main Features](#main-features)
  176. - [Where to get it](#where-to-get-it)
  177. - [Dependencies](#dependencies)
  178. - [Installation from sources](#installation-from-sources)
  179. - [License](#license)
  180. - [Documentation](#documentation)
  181. - [Background](#background)
  182. - [Getting Help](#getting-help)
  183. - [Discussion and Development](#discussion-and-development)
  184. - [Contributing to pandas](#contributing-to-pandas)
  185. ## Main Features
  186. Here are just a few of the things that pandas does well:
  187. - Easy handling of [**missing data**][missing-data] (represented as
  188. `NaN`, `NA`, or `NaT`) in floating point as well as non-floating point data
  189. - Size mutability: columns can be [**inserted and
  190. deleted**][insertion-deletion] from DataFrame and higher dimensional
  191. objects
  192. - Automatic and explicit [**data alignment**][alignment]: objects can
  193. be explicitly aligned to a set of labels, or the user can simply
  194. ignore the labels and let `Series`, `DataFrame`, etc. automatically
  195. align the data for you in computations
  196. - Powerful, flexible [**group by**][groupby] functionality to perform
  197. split-apply-combine operations on data sets, for both aggregating
  198. and transforming data
  199. - Make it [**easy to convert**][conversion] ragged,
  200. differently-indexed data in other Python and NumPy data structures
  201. into DataFrame objects
  202. - Intelligent label-based [**slicing**][slicing], [**fancy
  203. indexing**][fancy-indexing], and [**subsetting**][subsetting] of
  204. large data sets
  205. - Intuitive [**merging**][merging] and [**joining**][joining] data
  206. sets
  207. - Flexible [**reshaping**][reshape] and [**pivoting**][pivot-table] of
  208. data sets
  209. - [**Hierarchical**][mi] labeling of axes (possible to have multiple
  210. labels per tick)
  211. - Robust IO tools for loading data from [**flat files**][flat-files]
  212. (CSV and delimited), [**Excel files**][excel], [**databases**][db],
  213. and saving/loading data from the ultrafast [**HDF5 format**][hdfstore]
  214. - [**Time series**][timeseries]-specific functionality: date range
  215. generation and frequency conversion, moving window statistics,
  216. date shifting and lagging
  217. [missing-data]: https://pandas.pydata.org/pandas-docs/stable/user_guide/missing_data.html
  218. [insertion-deletion]: https://pandas.pydata.org/pandas-docs/stable/user_guide/dsintro.html#column-selection-addition-deletion
  219. [alignment]: https://pandas.pydata.org/pandas-docs/stable/user_guide/dsintro.html?highlight=alignment#intro-to-data-structures
  220. [groupby]: https://pandas.pydata.org/pandas-docs/stable/user_guide/groupby.html#group-by-split-apply-combine
  221. [conversion]: https://pandas.pydata.org/pandas-docs/stable/user_guide/dsintro.html#dataframe
  222. [slicing]: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#slicing-ranges
  223. [fancy-indexing]: https://pandas.pydata.org/pandas-docs/stable/user_guide/advanced.html#advanced
  224. [subsetting]: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#boolean-indexing
  225. [merging]: https://pandas.pydata.org/pandas-docs/stable/user_guide/merging.html#database-style-dataframe-or-named-series-joining-merging
  226. [joining]: https://pandas.pydata.org/pandas-docs/stable/user_guide/merging.html#joining-on-index
  227. [reshape]: https://pandas.pydata.org/pandas-docs/stable/user_guide/reshaping.html
  228. [pivot-table]: https://pandas.pydata.org/pandas-docs/stable/user_guide/reshaping.html
  229. [mi]: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#hierarchical-indexing-multiindex
  230. [flat-files]: https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#csv-text-files
  231. [excel]: https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#excel-files
  232. [db]: https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#sql-queries
  233. [hdfstore]: https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#hdf5-pytables
  234. [timeseries]: https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#time-series-date-functionality
  235. ## Where to get it
  236. The source code is currently hosted on GitHub at:
  237. https://github.com/pandas-dev/pandas
  238. Binary installers for the latest released version are available at the [Python
  239. Package Index (PyPI)](https://pypi.org/project/pandas) and on [Conda](https://docs.conda.io/en/latest/).
  240. ```sh
  241. # conda
  242. conda install -c conda-forge pandas
  243. ```
  244. ```sh
  245. # or PyPI
  246. pip install pandas
  247. ```
  248. The list of changes to pandas between each release can be found
  249. [here](https://pandas.pydata.org/pandas-docs/stable/whatsnew/index.html). For full
  250. details, see the commit logs at https://github.com/pandas-dev/pandas.
  251. ## Dependencies
  252. - [NumPy - Adds support for large, multi-dimensional arrays, matrices and high-level mathematical functions to operate on these arrays](https://www.numpy.org)
  253. - [python-dateutil - Provides powerful extensions to the standard datetime module](https://dateutil.readthedocs.io/en/stable/index.html)
  254. - [pytz - Brings the Olson tz database into Python which allows accurate and cross platform timezone calculations](https://github.com/stub42/pytz)
  255. See the [full installation instructions](https://pandas.pydata.org/pandas-docs/stable/install.html#dependencies) for minimum supported versions of required, recommended and optional dependencies.
  256. ## Installation from sources
  257. To install pandas from source you need [Cython](https://cython.org/) in addition to the normal
  258. dependencies above. Cython can be installed from PyPI:
  259. ```sh
  260. pip install cython
  261. ```
  262. In the `pandas` directory (same one where you found this file after
  263. cloning the git repo), execute:
  264. ```sh
  265. pip install .
  266. ```
  267. or for installing in [development mode](https://pip.pypa.io/en/latest/cli/pip_install/#install-editable):
  268. ```sh
  269. python -m pip install -ve . --no-build-isolation --config-settings=editable-verbose=true
  270. ```
  271. See the full instructions for [installing from source](https://pandas.pydata.org/docs/dev/development/contributing_environment.html).
  272. ## License
  273. [BSD 3](LICENSE)
  274. ## Documentation
  275. The official documentation is hosted on [PyData.org](https://pandas.pydata.org/pandas-docs/stable/).
  276. ## Background
  277. Work on ``pandas`` started at [AQR](https://www.aqr.com/) (a quantitative hedge fund) in 2008 and
  278. has been under active development since then.
  279. ## Getting Help
  280. For usage questions, the best place to go to is [StackOverflow](https://stackoverflow.com/questions/tagged/pandas).
  281. Further, general questions and discussions can also take place on the [pydata mailing list](https://groups.google.com/forum/?fromgroups#!forum/pydata).
  282. ## Discussion and Development
  283. Most development discussions take place on GitHub in this repo, via the [GitHub issue tracker](https://github.com/pandas-dev/pandas/issues).
  284. Further, the [pandas-dev mailing list](https://mail.python.org/mailman/listinfo/pandas-dev) can also be used for specialized discussions or design issues, and a [Slack channel](https://pandas.pydata.org/docs/dev/development/community.html?highlight=slack#community-slack) is available for quick development related questions.
  285. There are also frequent [community meetings](https://pandas.pydata.org/docs/dev/development/community.html#community-meeting) for project maintainers open to the community as well as monthly [new contributor meetings](https://pandas.pydata.org/docs/dev/development/community.html#new-contributor-meeting) to help support new contributors.
  286. Additional information on the communication channels can be found on the [contributor community](https://pandas.pydata.org/docs/development/community.html) page.
  287. ## Contributing to pandas
  288. [![Open Source Helpers](https://www.codetriage.com/pandas-dev/pandas/badges/users.svg)](https://www.codetriage.com/pandas-dev/pandas)
  289. All contributions, bug reports, bug fixes, documentation improvements, enhancements, and ideas are welcome.
  290. A detailed overview on how to contribute can be found in the **[contributing guide](https://pandas.pydata.org/docs/dev/development/contributing.html)**.
  291. If you are simply looking to start working with the pandas codebase, navigate to the [GitHub "issues" tab](https://github.com/pandas-dev/pandas/issues) and start looking through interesting issues. There are a number of issues listed under [Docs](https://github.com/pandas-dev/pandas/issues?labels=Docs&sort=updated&state=open) and [good first issue](https://github.com/pandas-dev/pandas/issues?labels=good+first+issue&sort=updated&state=open) where you could start out.
  292. You can also triage issues which may include reproducing bug reports, or asking for vital information such as version numbers or reproduction instructions. If you would like to start triaging issues, one easy way to get started is to [subscribe to pandas on CodeTriage](https://www.codetriage.com/pandas-dev/pandas).
  293. Or maybe through using pandas you have an idea of your own or are looking for something in the documentation and thinking ‘this can be improved’...you can do something about it!
  294. Feel free to ask questions on the [mailing list](https://groups.google.com/forum/?fromgroups#!forum/pydata) or on [Slack](https://pandas.pydata.org/docs/dev/development/community.html?highlight=slack#community-slack).
  295. As contributors and maintainers to this project, you are expected to abide by pandas' code of conduct. More information can be found at: [Contributor Code of Conduct](https://github.com/pandas-dev/.github/blob/master/CODE_OF_CONDUCT.md)
  296. <hr>
  297. [Go to Top](#table-of-contents)