main.py 9.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379
  1. from fastapi import (
  2. FastAPI,
  3. Request,
  4. Depends,
  5. HTTPException,
  6. status,
  7. UploadFile,
  8. File,
  9. Form,
  10. )
  11. from fastapi.middleware.cors import CORSMiddleware
  12. import os, shutil
  13. from typing import List
  14. # from chromadb.utils import embedding_functions
  15. from langchain_community.document_loaders import (
  16. WebBaseLoader,
  17. TextLoader,
  18. PyPDFLoader,
  19. CSVLoader,
  20. Docx2txtLoader,
  21. UnstructuredEPubLoader,
  22. UnstructuredWordDocumentLoader,
  23. UnstructuredMarkdownLoader,
  24. UnstructuredXMLLoader,
  25. UnstructuredRSTLoader,
  26. UnstructuredExcelLoader,
  27. )
  28. from langchain.text_splitter import RecursiveCharacterTextSplitter
  29. from langchain_community.vectorstores import Chroma
  30. from langchain.chains import RetrievalQA
  31. from pydantic import BaseModel
  32. from typing import Optional
  33. import uuid
  34. import time
  35. from utils.misc import calculate_sha256, calculate_sha256_string
  36. from utils.utils import get_current_user, get_admin_user
  37. from config import UPLOAD_DIR, EMBED_MODEL, CHROMA_CLIENT, CHUNK_SIZE, CHUNK_OVERLAP
  38. from constants import ERROR_MESSAGES
  39. # EMBEDDING_FUNC = embedding_functions.SentenceTransformerEmbeddingFunction(
  40. # model_name=EMBED_MODEL
  41. # )
  42. app = FastAPI()
  43. origins = ["*"]
  44. app.add_middleware(
  45. CORSMiddleware,
  46. allow_origins=origins,
  47. allow_credentials=True,
  48. allow_methods=["*"],
  49. allow_headers=["*"],
  50. )
  51. class CollectionNameForm(BaseModel):
  52. collection_name: Optional[str] = "test"
  53. class StoreWebForm(CollectionNameForm):
  54. url: str
  55. def store_data_in_vector_db(data, collection_name) -> bool:
  56. text_splitter = RecursiveCharacterTextSplitter(
  57. chunk_size=CHUNK_SIZE, chunk_overlap=CHUNK_OVERLAP
  58. )
  59. docs = text_splitter.split_documents(data)
  60. texts = [doc.page_content for doc in docs]
  61. metadatas = [doc.metadata for doc in docs]
  62. try:
  63. collection = CHROMA_CLIENT.create_collection(name=collection_name)
  64. collection.add(
  65. documents=texts, metadatas=metadatas, ids=[str(uuid.uuid1()) for _ in texts]
  66. )
  67. return True
  68. except Exception as e:
  69. print(e)
  70. if e.__class__.__name__ == "UniqueConstraintError":
  71. return True
  72. return False
  73. @app.get("/")
  74. async def get_status():
  75. return {"status": True}
  76. class QueryDocForm(BaseModel):
  77. collection_name: str
  78. query: str
  79. k: Optional[int] = 4
  80. @app.post("/query/doc")
  81. def query_doc(
  82. form_data: QueryDocForm,
  83. user=Depends(get_current_user),
  84. ):
  85. try:
  86. collection = CHROMA_CLIENT.get_collection(
  87. name=form_data.collection_name,
  88. )
  89. result = collection.query(query_texts=[form_data.query], n_results=form_data.k)
  90. return result
  91. except Exception as e:
  92. print(e)
  93. raise HTTPException(
  94. status_code=status.HTTP_400_BAD_REQUEST,
  95. detail=ERROR_MESSAGES.DEFAULT(e),
  96. )
  97. class QueryCollectionsForm(BaseModel):
  98. collection_names: List[str]
  99. query: str
  100. k: Optional[int] = 4
  101. def merge_and_sort_query_results(query_results, k):
  102. # Initialize lists to store combined data
  103. combined_ids = []
  104. combined_distances = []
  105. combined_metadatas = []
  106. combined_documents = []
  107. # Combine data from each dictionary
  108. for data in query_results:
  109. combined_ids.extend(data["ids"][0])
  110. combined_distances.extend(data["distances"][0])
  111. combined_metadatas.extend(data["metadatas"][0])
  112. combined_documents.extend(data["documents"][0])
  113. # Create a list of tuples (distance, id, metadata, document)
  114. combined = list(
  115. zip(combined_distances, combined_ids, combined_metadatas, combined_documents)
  116. )
  117. # Sort the list based on distances
  118. combined.sort(key=lambda x: x[0])
  119. # Unzip the sorted list
  120. sorted_distances, sorted_ids, sorted_metadatas, sorted_documents = zip(*combined)
  121. # Slicing the lists to include only k elements
  122. sorted_distances = list(sorted_distances)[:k]
  123. sorted_ids = list(sorted_ids)[:k]
  124. sorted_metadatas = list(sorted_metadatas)[:k]
  125. sorted_documents = list(sorted_documents)[:k]
  126. # Create the output dictionary
  127. merged_query_results = {
  128. "ids": [sorted_ids],
  129. "distances": [sorted_distances],
  130. "metadatas": [sorted_metadatas],
  131. "documents": [sorted_documents],
  132. "embeddings": None,
  133. "uris": None,
  134. "data": None,
  135. }
  136. return merged_query_results
  137. @app.post("/query/collection")
  138. def query_collection(
  139. form_data: QueryCollectionsForm,
  140. user=Depends(get_current_user),
  141. ):
  142. results = []
  143. for collection_name in form_data.collection_names:
  144. try:
  145. collection = CHROMA_CLIENT.get_collection(
  146. name=collection_name,
  147. )
  148. result = collection.query(
  149. query_texts=[form_data.query], n_results=form_data.k
  150. )
  151. results.append(result)
  152. except:
  153. pass
  154. return merge_and_sort_query_results(results, form_data.k)
  155. @app.post("/web")
  156. def store_web(form_data: StoreWebForm, user=Depends(get_current_user)):
  157. # "https://www.gutenberg.org/files/1727/1727-h/1727-h.htm"
  158. try:
  159. loader = WebBaseLoader(form_data.url)
  160. data = loader.load()
  161. collection_name = form_data.collection_name
  162. if collection_name == "":
  163. collection_name = calculate_sha256_string(form_data.url)[:63]
  164. store_data_in_vector_db(data, collection_name)
  165. return {
  166. "status": True,
  167. "collection_name": collection_name,
  168. "filename": form_data.url,
  169. }
  170. except Exception as e:
  171. print(e)
  172. raise HTTPException(
  173. status_code=status.HTTP_400_BAD_REQUEST,
  174. detail=ERROR_MESSAGES.DEFAULT(e),
  175. )
  176. def get_loader(file, file_path):
  177. file_ext = file.filename.split(".")[-1].lower()
  178. known_type = True
  179. known_source_ext = [
  180. "go",
  181. "py",
  182. "java",
  183. "sh",
  184. "bat",
  185. "ps1",
  186. "cmd",
  187. "js",
  188. "ts",
  189. "css",
  190. "cpp",
  191. "hpp",
  192. "h",
  193. "c",
  194. "cs",
  195. "sql",
  196. "log",
  197. "ini",
  198. "pl",
  199. "pm",
  200. "r",
  201. "dart",
  202. "dockerfile",
  203. "env",
  204. "php",
  205. "hs",
  206. "hsc",
  207. "lua",
  208. "nginxconf",
  209. "conf",
  210. "m",
  211. "mm",
  212. "plsql",
  213. "perl",
  214. "rb",
  215. "rs",
  216. "db2",
  217. "scala",
  218. "bash",
  219. "swift",
  220. "vue",
  221. "svelte",
  222. ]
  223. if file_ext == "pdf":
  224. loader = PyPDFLoader(file_path)
  225. elif file_ext == "csv":
  226. loader = CSVLoader(file_path)
  227. elif file_ext == "rst":
  228. loader = UnstructuredRSTLoader(file_path, mode="elements")
  229. elif file_ext == "xml":
  230. loader = UnstructuredXMLLoader(file_path)
  231. elif file_ext == "md":
  232. loader = UnstructuredMarkdownLoader(file_path)
  233. elif file.content_type == "application/epub+zip":
  234. loader = UnstructuredEPubLoader(file_path)
  235. elif (
  236. file.content_type
  237. == "application/vnd.openxmlformats-officedocument.wordprocessingml.document"
  238. or file_ext in ["doc", "docx"]
  239. ):
  240. loader = Docx2txtLoader(file_path)
  241. elif file.content_type in [
  242. "application/vnd.ms-excel",
  243. "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
  244. ] or file_ext in ["xls", "xlsx"]:
  245. loader = UnstructuredExcelLoader(file_path)
  246. elif file_ext in known_source_ext or file.content_type.find("text/") >= 0:
  247. loader = TextLoader(file_path)
  248. else:
  249. loader = TextLoader(file_path)
  250. known_type = False
  251. return loader, known_type
  252. @app.post("/doc")
  253. def store_doc(
  254. collection_name: Optional[str] = Form(None),
  255. file: UploadFile = File(...),
  256. user=Depends(get_current_user),
  257. ):
  258. # "https://www.gutenberg.org/files/1727/1727-h/1727-h.htm"
  259. print(file.content_type)
  260. try:
  261. filename = file.filename
  262. file_path = f"{UPLOAD_DIR}/{filename}"
  263. contents = file.file.read()
  264. with open(file_path, "wb") as f:
  265. f.write(contents)
  266. f.close()
  267. f = open(file_path, "rb")
  268. if collection_name == None:
  269. collection_name = calculate_sha256(f)[:63]
  270. f.close()
  271. loader, known_type = get_loader(file, file_path)
  272. data = loader.load()
  273. result = store_data_in_vector_db(data, collection_name)
  274. if result:
  275. return {
  276. "status": True,
  277. "collection_name": collection_name,
  278. "filename": filename,
  279. "known_type": known_type,
  280. }
  281. else:
  282. raise HTTPException(
  283. status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
  284. detail=ERROR_MESSAGES.DEFAULT(),
  285. )
  286. except Exception as e:
  287. print(e)
  288. if "No pandoc was found" in str(e):
  289. raise HTTPException(
  290. status_code=status.HTTP_400_BAD_REQUEST,
  291. detail=ERROR_MESSAGES.PANDOC_NOT_INSTALLED,
  292. )
  293. else:
  294. raise HTTPException(
  295. status_code=status.HTTP_400_BAD_REQUEST,
  296. detail=ERROR_MESSAGES.DEFAULT(e),
  297. )
  298. @app.get("/reset/db")
  299. def reset_vector_db(user=Depends(get_admin_user)):
  300. CHROMA_CLIENT.reset()
  301. @app.get("/reset")
  302. def reset(user=Depends(get_admin_user)) -> bool:
  303. folder = f"{UPLOAD_DIR}"
  304. for filename in os.listdir(folder):
  305. file_path = os.path.join(folder, filename)
  306. try:
  307. if os.path.isfile(file_path) or os.path.islink(file_path):
  308. os.unlink(file_path)
  309. elif os.path.isdir(file_path):
  310. shutil.rmtree(file_path)
  311. except Exception as e:
  312. print("Failed to delete %s. Reason: %s" % (file_path, e))
  313. try:
  314. CHROMA_CLIENT.reset()
  315. except Exception as e:
  316. print(e)
  317. return True