retrieval.py 54 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532
  1. import json
  2. import logging
  3. import mimetypes
  4. import os
  5. import shutil
  6. import uuid
  7. from datetime import datetime
  8. from pathlib import Path
  9. from typing import Iterator, List, Optional, Sequence, Union
  10. from fastapi import (
  11. Depends,
  12. FastAPI,
  13. File,
  14. Form,
  15. HTTPException,
  16. UploadFile,
  17. Request,
  18. status,
  19. APIRouter,
  20. )
  21. from fastapi.middleware.cors import CORSMiddleware
  22. from pydantic import BaseModel
  23. import tiktoken
  24. from langchain.text_splitter import RecursiveCharacterTextSplitter, TokenTextSplitter
  25. from langchain_core.documents import Document
  26. from open_webui.models.files import FileModel, Files
  27. from open_webui.models.knowledge import Knowledges
  28. from open_webui.storage.provider import Storage
  29. from open_webui.retrieval.vector.connector import VECTOR_DB_CLIENT
  30. # Document loaders
  31. from open_webui.retrieval.loaders.main import Loader
  32. from open_webui.retrieval.loaders.youtube import YoutubeLoader
  33. # Web search engines
  34. from open_webui.retrieval.web.main import SearchResult
  35. from open_webui.retrieval.web.utils import get_web_loader
  36. from open_webui.retrieval.web.brave import search_brave
  37. from open_webui.retrieval.web.kagi import search_kagi
  38. from open_webui.retrieval.web.mojeek import search_mojeek
  39. from open_webui.retrieval.web.duckduckgo import search_duckduckgo
  40. from open_webui.retrieval.web.google_pse import search_google_pse
  41. from open_webui.retrieval.web.jina_search import search_jina
  42. from open_webui.retrieval.web.searchapi import search_searchapi
  43. from open_webui.retrieval.web.searxng import search_searxng
  44. from open_webui.retrieval.web.serper import search_serper
  45. from open_webui.retrieval.web.serply import search_serply
  46. from open_webui.retrieval.web.serpstack import search_serpstack
  47. from open_webui.retrieval.web.tavily import search_tavily
  48. from open_webui.retrieval.web.bing import search_bing
  49. from open_webui.retrieval.utils import (
  50. get_embedding_function,
  51. get_model_path,
  52. query_collection,
  53. query_collection_with_hybrid_search,
  54. query_doc,
  55. query_doc_with_hybrid_search,
  56. )
  57. from open_webui.utils.misc import (
  58. calculate_sha256_string,
  59. )
  60. from open_webui.utils.auth import get_admin_user, get_verified_user
  61. from open_webui.config import (
  62. ENV,
  63. RAG_EMBEDDING_MODEL_AUTO_UPDATE,
  64. RAG_EMBEDDING_MODEL_TRUST_REMOTE_CODE,
  65. RAG_RERANKING_MODEL_AUTO_UPDATE,
  66. RAG_RERANKING_MODEL_TRUST_REMOTE_CODE,
  67. UPLOAD_DIR,
  68. DEFAULT_LOCALE,
  69. )
  70. from open_webui.env import (
  71. SRC_LOG_LEVELS,
  72. DEVICE_TYPE,
  73. DOCKER,
  74. )
  75. from open_webui.constants import ERROR_MESSAGES
  76. log = logging.getLogger(__name__)
  77. log.setLevel(SRC_LOG_LEVELS["RAG"])
  78. ##########################################
  79. #
  80. # Utility functions
  81. #
  82. ##########################################
  83. def get_ef(
  84. engine: str,
  85. embedding_model: str,
  86. auto_update: bool = False,
  87. ):
  88. ef = None
  89. if embedding_model and engine == "":
  90. from sentence_transformers import SentenceTransformer
  91. try:
  92. ef = SentenceTransformer(
  93. get_model_path(embedding_model, auto_update),
  94. device=DEVICE_TYPE,
  95. trust_remote_code=RAG_EMBEDDING_MODEL_TRUST_REMOTE_CODE,
  96. )
  97. except Exception as e:
  98. log.debug(f"Error loading SentenceTransformer: {e}")
  99. return ef
  100. def get_rf(
  101. reranking_model: str,
  102. auto_update: bool = False,
  103. ):
  104. rf = None
  105. if reranking_model:
  106. if any(model in reranking_model for model in ["jinaai/jina-colbert-v2"]):
  107. try:
  108. from open_webui.retrieval.models.colbert import ColBERT
  109. rf = ColBERT(
  110. get_model_path(reranking_model, auto_update),
  111. env="docker" if DOCKER else None,
  112. )
  113. except Exception as e:
  114. log.error(f"ColBERT: {e}")
  115. raise Exception(ERROR_MESSAGES.DEFAULT(e))
  116. else:
  117. import sentence_transformers
  118. try:
  119. rf = sentence_transformers.CrossEncoder(
  120. get_model_path(reranking_model, auto_update),
  121. device=DEVICE_TYPE,
  122. trust_remote_code=RAG_RERANKING_MODEL_TRUST_REMOTE_CODE,
  123. )
  124. except:
  125. log.error("CrossEncoder error")
  126. raise Exception(ERROR_MESSAGES.DEFAULT("CrossEncoder error"))
  127. return rf
  128. ##########################################
  129. #
  130. # API routes
  131. #
  132. ##########################################
  133. router = APIRouter()
  134. class CollectionNameForm(BaseModel):
  135. collection_name: Optional[str] = None
  136. class ProcessUrlForm(CollectionNameForm):
  137. url: str
  138. class SearchForm(CollectionNameForm):
  139. query: str
  140. @router.get("/")
  141. async def get_status(request: Request):
  142. return {
  143. "status": True,
  144. "chunk_size": request.app.state.config.CHUNK_SIZE,
  145. "chunk_overlap": request.app.state.config.CHUNK_OVERLAP,
  146. "template": request.app.state.config.RAG_TEMPLATE,
  147. "embedding_engine": request.app.state.config.RAG_EMBEDDING_ENGINE,
  148. "embedding_model": request.app.state.config.RAG_EMBEDDING_MODEL,
  149. "reranking_model": request.app.state.config.RAG_RERANKING_MODEL,
  150. "embedding_batch_size": request.app.state.config.RAG_EMBEDDING_BATCH_SIZE,
  151. }
  152. @router.get("/embedding")
  153. async def get_embedding_config(request: Request, user=Depends(get_admin_user)):
  154. return {
  155. "status": True,
  156. "embedding_engine": request.app.state.config.RAG_EMBEDDING_ENGINE,
  157. "embedding_model": request.app.state.config.RAG_EMBEDDING_MODEL,
  158. "embedding_batch_size": request.app.state.config.RAG_EMBEDDING_BATCH_SIZE,
  159. "openai_config": {
  160. "url": request.app.state.config.RAG_OPENAI_API_BASE_URL,
  161. "key": request.app.state.config.RAG_OPENAI_API_KEY,
  162. },
  163. "ollama_config": {
  164. "url": request.app.state.config.RAG_OLLAMA_BASE_URL,
  165. "key": request.app.state.config.RAG_OLLAMA_API_KEY,
  166. },
  167. }
  168. @router.get("/reranking")
  169. async def get_reraanking_config(request: Request, user=Depends(get_admin_user)):
  170. return {
  171. "status": True,
  172. "reranking_model": request.app.state.config.RAG_RERANKING_MODEL,
  173. }
  174. class OpenAIConfigForm(BaseModel):
  175. url: str
  176. key: str
  177. class OllamaConfigForm(BaseModel):
  178. url: str
  179. key: str
  180. class EmbeddingModelUpdateForm(BaseModel):
  181. openai_config: Optional[OpenAIConfigForm] = None
  182. ollama_config: Optional[OllamaConfigForm] = None
  183. embedding_engine: str
  184. embedding_model: str
  185. embedding_batch_size: Optional[int] = 1
  186. @router.post("/embedding/update")
  187. async def update_embedding_config(
  188. request: Request, form_data: EmbeddingModelUpdateForm, user=Depends(get_admin_user)
  189. ):
  190. log.info(
  191. f"Updating embedding model: {request.app.state.config.RAG_EMBEDDING_MODEL} to {form_data.embedding_model}"
  192. )
  193. try:
  194. request.app.state.config.RAG_EMBEDDING_ENGINE = form_data.embedding_engine
  195. request.app.state.config.RAG_EMBEDDING_MODEL = form_data.embedding_model
  196. if request.app.state.config.RAG_EMBEDDING_ENGINE in ["ollama", "openai"]:
  197. if form_data.openai_config is not None:
  198. request.app.state.config.RAG_OPENAI_API_BASE_URL = (
  199. form_data.openai_config.url
  200. )
  201. request.app.state.config.RAG_OPENAI_API_KEY = (
  202. form_data.openai_config.key
  203. )
  204. if form_data.ollama_config is not None:
  205. request.app.state.config.RAG_OLLAMA_BASE_URL = (
  206. form_data.ollama_config.url
  207. )
  208. request.app.state.config.RAG_OLLAMA_API_KEY = (
  209. form_data.ollama_config.key
  210. )
  211. request.app.state.config.RAG_EMBEDDING_BATCH_SIZE = (
  212. form_data.embedding_batch_size
  213. )
  214. request.app.state.ef = get_ef(
  215. request.app.state.config.RAG_EMBEDDING_ENGINE,
  216. request.app.state.config.RAG_EMBEDDING_MODEL,
  217. )
  218. request.app.state.EMBEDDING_FUNCTION = get_embedding_function(
  219. request.app.state.config.RAG_EMBEDDING_ENGINE,
  220. request.app.state.config.RAG_EMBEDDING_MODEL,
  221. request.app.state.ef,
  222. (
  223. request.app.state.config.RAG_OPENAI_API_BASE_URL
  224. if request.app.state.config.RAG_EMBEDDING_ENGINE == "openai"
  225. else request.app.state.config.RAG_OLLAMA_BASE_URL
  226. ),
  227. (
  228. request.app.state.config.RAG_OPENAI_API_KEY
  229. if request.app.state.config.RAG_EMBEDDING_ENGINE == "openai"
  230. else request.app.state.config.RAG_OLLAMA_API_KEY
  231. ),
  232. request.app.state.config.RAG_EMBEDDING_BATCH_SIZE,
  233. )
  234. return {
  235. "status": True,
  236. "embedding_engine": request.app.state.config.RAG_EMBEDDING_ENGINE,
  237. "embedding_model": request.app.state.config.RAG_EMBEDDING_MODEL,
  238. "embedding_batch_size": request.app.state.config.RAG_EMBEDDING_BATCH_SIZE,
  239. "openai_config": {
  240. "url": request.app.state.config.RAG_OPENAI_API_BASE_URL,
  241. "key": request.app.state.config.RAG_OPENAI_API_KEY,
  242. },
  243. "ollama_config": {
  244. "url": request.app.state.config.RAG_OLLAMA_BASE_URL,
  245. "key": request.app.state.config.RAG_OLLAMA_API_KEY,
  246. },
  247. }
  248. except Exception as e:
  249. log.exception(f"Problem updating embedding model: {e}")
  250. raise HTTPException(
  251. status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
  252. detail=ERROR_MESSAGES.DEFAULT(e),
  253. )
  254. class RerankingModelUpdateForm(BaseModel):
  255. reranking_model: str
  256. @router.post("/reranking/update")
  257. async def update_reranking_config(
  258. request: Request, form_data: RerankingModelUpdateForm, user=Depends(get_admin_user)
  259. ):
  260. log.info(
  261. f"Updating reranking model: {request.app.state.config.RAG_RERANKING_MODEL} to {form_data.reranking_model}"
  262. )
  263. try:
  264. request.app.state.config.RAG_RERANKING_MODEL = form_data.reranking_model
  265. try:
  266. request.app.state.rf = get_rf(
  267. request.app.state.config.RAG_RERANKING_MODEL,
  268. True,
  269. )
  270. except Exception as e:
  271. log.error(f"Error loading reranking model: {e}")
  272. request.app.state.config.ENABLE_RAG_HYBRID_SEARCH = False
  273. return {
  274. "status": True,
  275. "reranking_model": request.app.state.config.RAG_RERANKING_MODEL,
  276. }
  277. except Exception as e:
  278. log.exception(f"Problem updating reranking model: {e}")
  279. raise HTTPException(
  280. status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
  281. detail=ERROR_MESSAGES.DEFAULT(e),
  282. )
  283. @router.get("/config")
  284. async def get_rag_config(request: Request, user=Depends(get_admin_user)):
  285. return {
  286. "status": True,
  287. "pdf_extract_images": request.app.state.config.PDF_EXTRACT_IMAGES,
  288. "enable_google_drive_integration": request.app.state.config.ENABLE_GOOGLE_DRIVE_INTEGRATION,
  289. "content_extraction": {
  290. "engine": request.app.state.config.CONTENT_EXTRACTION_ENGINE,
  291. "tika_server_url": request.app.state.config.TIKA_SERVER_URL,
  292. },
  293. "chunk": {
  294. "text_splitter": request.app.state.config.TEXT_SPLITTER,
  295. "chunk_size": request.app.state.config.CHUNK_SIZE,
  296. "chunk_overlap": request.app.state.config.CHUNK_OVERLAP,
  297. },
  298. "file": {
  299. "max_size": request.app.state.config.FILE_MAX_SIZE,
  300. "max_count": request.app.state.config.FILE_MAX_COUNT,
  301. },
  302. "youtube": {
  303. "language": request.app.state.config.YOUTUBE_LOADER_LANGUAGE,
  304. "translation": request.app.state.YOUTUBE_LOADER_TRANSLATION,
  305. "proxy_url": request.app.state.config.YOUTUBE_LOADER_PROXY_URL,
  306. },
  307. "web": {
  308. "web_loader_ssl_verification": request.app.state.config.ENABLE_RAG_WEB_LOADER_SSL_VERIFICATION,
  309. "search": {
  310. "enabled": request.app.state.config.ENABLE_RAG_WEB_SEARCH,
  311. "drive": request.app.state.config.ENABLE_GOOGLE_DRIVE_INTEGRATION,
  312. "engine": request.app.state.config.RAG_WEB_SEARCH_ENGINE,
  313. "searxng_query_url": request.app.state.config.SEARXNG_QUERY_URL,
  314. "google_pse_api_key": request.app.state.config.GOOGLE_PSE_API_KEY,
  315. "google_pse_engine_id": request.app.state.config.GOOGLE_PSE_ENGINE_ID,
  316. "brave_search_api_key": request.app.state.config.BRAVE_SEARCH_API_KEY,
  317. "kagi_search_api_key": request.app.state.config.KAGI_SEARCH_API_KEY,
  318. "mojeek_search_api_key": request.app.state.config.MOJEEK_SEARCH_API_KEY,
  319. "serpstack_api_key": request.app.state.config.SERPSTACK_API_KEY,
  320. "serpstack_https": request.app.state.config.SERPSTACK_HTTPS,
  321. "serper_api_key": request.app.state.config.SERPER_API_KEY,
  322. "serply_api_key": request.app.state.config.SERPLY_API_KEY,
  323. "tavily_api_key": request.app.state.config.TAVILY_API_KEY,
  324. "searchapi_api_key": request.app.state.config.SEARCHAPI_API_KEY,
  325. "searchapi_engine": request.app.state.config.SEARCHAPI_ENGINE,
  326. "jina_api_key": request.app.state.config.JINA_API_KEY,
  327. "bing_search_v7_endpoint": request.app.state.config.BING_SEARCH_V7_ENDPOINT,
  328. "bing_search_v7_subscription_key": request.app.state.config.BING_SEARCH_V7_SUBSCRIPTION_KEY,
  329. "result_count": request.app.state.config.RAG_WEB_SEARCH_RESULT_COUNT,
  330. "concurrent_requests": request.app.state.config.RAG_WEB_SEARCH_CONCURRENT_REQUESTS,
  331. },
  332. },
  333. }
  334. class FileConfig(BaseModel):
  335. max_size: Optional[int] = None
  336. max_count: Optional[int] = None
  337. class ContentExtractionConfig(BaseModel):
  338. engine: str = ""
  339. tika_server_url: Optional[str] = None
  340. class ChunkParamUpdateForm(BaseModel):
  341. text_splitter: Optional[str] = None
  342. chunk_size: int
  343. chunk_overlap: int
  344. class YoutubeLoaderConfig(BaseModel):
  345. language: list[str]
  346. translation: Optional[str] = None
  347. proxy_url: str = ""
  348. class WebSearchConfig(BaseModel):
  349. enabled: bool
  350. engine: Optional[str] = None
  351. searxng_query_url: Optional[str] = None
  352. google_pse_api_key: Optional[str] = None
  353. google_pse_engine_id: Optional[str] = None
  354. brave_search_api_key: Optional[str] = None
  355. kagi_search_api_key: Optional[str] = None
  356. mojeek_search_api_key: Optional[str] = None
  357. serpstack_api_key: Optional[str] = None
  358. serpstack_https: Optional[bool] = None
  359. serper_api_key: Optional[str] = None
  360. serply_api_key: Optional[str] = None
  361. tavily_api_key: Optional[str] = None
  362. searchapi_api_key: Optional[str] = None
  363. searchapi_engine: Optional[str] = None
  364. jina_api_key: Optional[str] = None
  365. bing_search_v7_endpoint: Optional[str] = None
  366. bing_search_v7_subscription_key: Optional[str] = None
  367. result_count: Optional[int] = None
  368. concurrent_requests: Optional[int] = None
  369. class WebConfig(BaseModel):
  370. search: WebSearchConfig
  371. web_loader_ssl_verification: Optional[bool] = None
  372. class ConfigUpdateForm(BaseModel):
  373. pdf_extract_images: Optional[bool] = None
  374. enable_google_drive_integration: Optional[bool] = None
  375. file: Optional[FileConfig] = None
  376. content_extraction: Optional[ContentExtractionConfig] = None
  377. chunk: Optional[ChunkParamUpdateForm] = None
  378. youtube: Optional[YoutubeLoaderConfig] = None
  379. web: Optional[WebConfig] = None
  380. @router.post("/config/update")
  381. async def update_rag_config(
  382. request: Request, form_data: ConfigUpdateForm, user=Depends(get_admin_user)
  383. ):
  384. request.app.state.config.PDF_EXTRACT_IMAGES = (
  385. form_data.pdf_extract_images
  386. if form_data.pdf_extract_images is not None
  387. else request.app.state.config.PDF_EXTRACT_IMAGES
  388. )
  389. request.app.state.config.ENABLE_GOOGLE_DRIVE_INTEGRATION = (
  390. form_data.enable_google_drive_integration
  391. if form_data.enable_google_drive_integration is not None
  392. else request.app.state.config.ENABLE_GOOGLE_DRIVE_INTEGRATION
  393. )
  394. if form_data.file is not None:
  395. request.app.state.config.FILE_MAX_SIZE = form_data.file.max_size
  396. request.app.state.config.FILE_MAX_COUNT = form_data.file.max_count
  397. if form_data.content_extraction is not None:
  398. log.info(f"Updating text settings: {form_data.content_extraction}")
  399. request.app.state.config.CONTENT_EXTRACTION_ENGINE = (
  400. form_data.content_extraction.engine
  401. )
  402. request.app.state.config.TIKA_SERVER_URL = (
  403. form_data.content_extraction.tika_server_url
  404. )
  405. if form_data.chunk is not None:
  406. request.app.state.config.TEXT_SPLITTER = form_data.chunk.text_splitter
  407. request.app.state.config.CHUNK_SIZE = form_data.chunk.chunk_size
  408. request.app.state.config.CHUNK_OVERLAP = form_data.chunk.chunk_overlap
  409. if form_data.youtube is not None:
  410. request.app.state.config.YOUTUBE_LOADER_LANGUAGE = form_data.youtube.language
  411. request.app.state.config.YOUTUBE_LOADER_PROXY_URL = form_data.youtube.proxy_url
  412. request.app.state.YOUTUBE_LOADER_TRANSLATION = form_data.youtube.translation
  413. if form_data.web is not None:
  414. request.app.state.config.ENABLE_RAG_WEB_LOADER_SSL_VERIFICATION = (
  415. # Note: When UI "Bypass SSL verification for Websites"=True then ENABLE_RAG_WEB_LOADER_SSL_VERIFICATION=False
  416. form_data.web.web_loader_ssl_verification
  417. )
  418. request.app.state.config.ENABLE_RAG_WEB_SEARCH = form_data.web.search.enabled
  419. request.app.state.config.RAG_WEB_SEARCH_ENGINE = form_data.web.search.engine
  420. request.app.state.config.SEARXNG_QUERY_URL = (
  421. form_data.web.search.searxng_query_url
  422. )
  423. request.app.state.config.GOOGLE_PSE_API_KEY = (
  424. form_data.web.search.google_pse_api_key
  425. )
  426. request.app.state.config.GOOGLE_PSE_ENGINE_ID = (
  427. form_data.web.search.google_pse_engine_id
  428. )
  429. request.app.state.config.BRAVE_SEARCH_API_KEY = (
  430. form_data.web.search.brave_search_api_key
  431. )
  432. request.app.state.config.KAGI_SEARCH_API_KEY = (
  433. form_data.web.search.kagi_search_api_key
  434. )
  435. request.app.state.config.MOJEEK_SEARCH_API_KEY = (
  436. form_data.web.search.mojeek_search_api_key
  437. )
  438. request.app.state.config.SERPSTACK_API_KEY = (
  439. form_data.web.search.serpstack_api_key
  440. )
  441. request.app.state.config.SERPSTACK_HTTPS = form_data.web.search.serpstack_https
  442. request.app.state.config.SERPER_API_KEY = form_data.web.search.serper_api_key
  443. request.app.state.config.SERPLY_API_KEY = form_data.web.search.serply_api_key
  444. request.app.state.config.TAVILY_API_KEY = form_data.web.search.tavily_api_key
  445. request.app.state.config.SEARCHAPI_API_KEY = (
  446. form_data.web.search.searchapi_api_key
  447. )
  448. request.app.state.config.SEARCHAPI_ENGINE = (
  449. form_data.web.search.searchapi_engine
  450. )
  451. request.app.state.config.JINA_API_KEY = form_data.web.search.jina_api_key
  452. request.app.state.config.BING_SEARCH_V7_ENDPOINT = (
  453. form_data.web.search.bing_search_v7_endpoint
  454. )
  455. request.app.state.config.BING_SEARCH_V7_SUBSCRIPTION_KEY = (
  456. form_data.web.search.bing_search_v7_subscription_key
  457. )
  458. request.app.state.config.RAG_WEB_SEARCH_RESULT_COUNT = (
  459. form_data.web.search.result_count
  460. )
  461. request.app.state.config.RAG_WEB_SEARCH_CONCURRENT_REQUESTS = (
  462. form_data.web.search.concurrent_requests
  463. )
  464. return {
  465. "status": True,
  466. "pdf_extract_images": request.app.state.config.PDF_EXTRACT_IMAGES,
  467. "file": {
  468. "max_size": request.app.state.config.FILE_MAX_SIZE,
  469. "max_count": request.app.state.config.FILE_MAX_COUNT,
  470. },
  471. "content_extraction": {
  472. "engine": request.app.state.config.CONTENT_EXTRACTION_ENGINE,
  473. "tika_server_url": request.app.state.config.TIKA_SERVER_URL,
  474. },
  475. "chunk": {
  476. "text_splitter": request.app.state.config.TEXT_SPLITTER,
  477. "chunk_size": request.app.state.config.CHUNK_SIZE,
  478. "chunk_overlap": request.app.state.config.CHUNK_OVERLAP,
  479. },
  480. "youtube": {
  481. "language": request.app.state.config.YOUTUBE_LOADER_LANGUAGE,
  482. "proxy_url": request.app.state.config.YOUTUBE_LOADER_PROXY_URL,
  483. "translation": request.app.state.YOUTUBE_LOADER_TRANSLATION,
  484. },
  485. "web": {
  486. "web_loader_ssl_verification": request.app.state.config.ENABLE_RAG_WEB_LOADER_SSL_VERIFICATION,
  487. "search": {
  488. "enabled": request.app.state.config.ENABLE_RAG_WEB_SEARCH,
  489. "engine": request.app.state.config.RAG_WEB_SEARCH_ENGINE,
  490. "searxng_query_url": request.app.state.config.SEARXNG_QUERY_URL,
  491. "google_pse_api_key": request.app.state.config.GOOGLE_PSE_API_KEY,
  492. "google_pse_engine_id": request.app.state.config.GOOGLE_PSE_ENGINE_ID,
  493. "brave_search_api_key": request.app.state.config.BRAVE_SEARCH_API_KEY,
  494. "kagi_search_api_key": request.app.state.config.KAGI_SEARCH_API_KEY,
  495. "mojeek_search_api_key": request.app.state.config.MOJEEK_SEARCH_API_KEY,
  496. "serpstack_api_key": request.app.state.config.SERPSTACK_API_KEY,
  497. "serpstack_https": request.app.state.config.SERPSTACK_HTTPS,
  498. "serper_api_key": request.app.state.config.SERPER_API_KEY,
  499. "serply_api_key": request.app.state.config.SERPLY_API_KEY,
  500. "serachapi_api_key": request.app.state.config.SEARCHAPI_API_KEY,
  501. "searchapi_engine": request.app.state.config.SEARCHAPI_ENGINE,
  502. "tavily_api_key": request.app.state.config.TAVILY_API_KEY,
  503. "jina_api_key": request.app.state.config.JINA_API_KEY,
  504. "bing_search_v7_endpoint": request.app.state.config.BING_SEARCH_V7_ENDPOINT,
  505. "bing_search_v7_subscription_key": request.app.state.config.BING_SEARCH_V7_SUBSCRIPTION_KEY,
  506. "result_count": request.app.state.config.RAG_WEB_SEARCH_RESULT_COUNT,
  507. "concurrent_requests": request.app.state.config.RAG_WEB_SEARCH_CONCURRENT_REQUESTS,
  508. },
  509. },
  510. }
  511. @router.get("/template")
  512. async def get_rag_template(request: Request, user=Depends(get_verified_user)):
  513. return {
  514. "status": True,
  515. "template": request.app.state.config.RAG_TEMPLATE,
  516. }
  517. @router.get("/query/settings")
  518. async def get_query_settings(request: Request, user=Depends(get_admin_user)):
  519. return {
  520. "status": True,
  521. "template": request.app.state.config.RAG_TEMPLATE,
  522. "k": request.app.state.config.TOP_K,
  523. "r": request.app.state.config.RELEVANCE_THRESHOLD,
  524. "hybrid": request.app.state.config.ENABLE_RAG_HYBRID_SEARCH,
  525. }
  526. class QuerySettingsForm(BaseModel):
  527. k: Optional[int] = None
  528. r: Optional[float] = None
  529. template: Optional[str] = None
  530. hybrid: Optional[bool] = None
  531. @router.post("/query/settings/update")
  532. async def update_query_settings(
  533. request: Request, form_data: QuerySettingsForm, user=Depends(get_admin_user)
  534. ):
  535. request.app.state.config.RAG_TEMPLATE = form_data.template
  536. request.app.state.config.TOP_K = form_data.k if form_data.k else 4
  537. request.app.state.config.RELEVANCE_THRESHOLD = form_data.r if form_data.r else 0.0
  538. request.app.state.config.ENABLE_RAG_HYBRID_SEARCH = (
  539. form_data.hybrid if form_data.hybrid else False
  540. )
  541. return {
  542. "status": True,
  543. "template": request.app.state.config.RAG_TEMPLATE,
  544. "k": request.app.state.config.TOP_K,
  545. "r": request.app.state.config.RELEVANCE_THRESHOLD,
  546. "hybrid": request.app.state.config.ENABLE_RAG_HYBRID_SEARCH,
  547. }
  548. ####################################
  549. #
  550. # Document process and retrieval
  551. #
  552. ####################################
  553. def save_docs_to_vector_db(
  554. request: Request,
  555. docs,
  556. collection_name,
  557. metadata: Optional[dict] = None,
  558. overwrite: bool = False,
  559. split: bool = True,
  560. add: bool = False,
  561. ) -> bool:
  562. def _get_docs_info(docs: list[Document]) -> str:
  563. docs_info = set()
  564. # Trying to select relevant metadata identifying the document.
  565. for doc in docs:
  566. metadata = getattr(doc, "metadata", {})
  567. doc_name = metadata.get("name", "")
  568. if not doc_name:
  569. doc_name = metadata.get("title", "")
  570. if not doc_name:
  571. doc_name = metadata.get("source", "")
  572. if doc_name:
  573. docs_info.add(doc_name)
  574. return ", ".join(docs_info)
  575. log.info(
  576. f"save_docs_to_vector_db: document {_get_docs_info(docs)} {collection_name}"
  577. )
  578. # Check if entries with the same hash (metadata.hash) already exist
  579. if metadata and "hash" in metadata:
  580. result = VECTOR_DB_CLIENT.query(
  581. collection_name=collection_name,
  582. filter={"hash": metadata["hash"]},
  583. )
  584. if result is not None:
  585. existing_doc_ids = result.ids[0]
  586. if existing_doc_ids:
  587. log.info(f"Document with hash {metadata['hash']} already exists")
  588. raise ValueError(ERROR_MESSAGES.DUPLICATE_CONTENT)
  589. if split:
  590. if request.app.state.config.TEXT_SPLITTER in ["", "character"]:
  591. text_splitter = RecursiveCharacterTextSplitter(
  592. chunk_size=request.app.state.config.CHUNK_SIZE,
  593. chunk_overlap=request.app.state.config.CHUNK_OVERLAP,
  594. add_start_index=True,
  595. )
  596. elif request.app.state.config.TEXT_SPLITTER == "token":
  597. log.info(
  598. f"Using token text splitter: {request.app.state.config.TIKTOKEN_ENCODING_NAME}"
  599. )
  600. tiktoken.get_encoding(str(request.app.state.config.TIKTOKEN_ENCODING_NAME))
  601. text_splitter = TokenTextSplitter(
  602. encoding_name=str(request.app.state.config.TIKTOKEN_ENCODING_NAME),
  603. chunk_size=request.app.state.config.CHUNK_SIZE,
  604. chunk_overlap=request.app.state.config.CHUNK_OVERLAP,
  605. add_start_index=True,
  606. )
  607. else:
  608. raise ValueError(ERROR_MESSAGES.DEFAULT("Invalid text splitter"))
  609. docs = text_splitter.split_documents(docs)
  610. if len(docs) == 0:
  611. raise ValueError(ERROR_MESSAGES.EMPTY_CONTENT)
  612. texts = [doc.page_content for doc in docs]
  613. metadatas = [
  614. {
  615. **doc.metadata,
  616. **(metadata if metadata else {}),
  617. "embedding_config": json.dumps(
  618. {
  619. "engine": request.app.state.config.RAG_EMBEDDING_ENGINE,
  620. "model": request.app.state.config.RAG_EMBEDDING_MODEL,
  621. }
  622. ),
  623. }
  624. for doc in docs
  625. ]
  626. # ChromaDB does not like datetime formats
  627. # for meta-data so convert them to string.
  628. for metadata in metadatas:
  629. for key, value in metadata.items():
  630. if isinstance(value, datetime):
  631. metadata[key] = str(value)
  632. try:
  633. if VECTOR_DB_CLIENT.has_collection(collection_name=collection_name):
  634. log.info(f"collection {collection_name} already exists")
  635. if overwrite:
  636. VECTOR_DB_CLIENT.delete_collection(collection_name=collection_name)
  637. log.info(f"deleting existing collection {collection_name}")
  638. elif add is False:
  639. log.info(
  640. f"collection {collection_name} already exists, overwrite is False and add is False"
  641. )
  642. return True
  643. log.info(f"adding to collection {collection_name}")
  644. embedding_function = get_embedding_function(
  645. request.app.state.config.RAG_EMBEDDING_ENGINE,
  646. request.app.state.config.RAG_EMBEDDING_MODEL,
  647. request.app.state.ef,
  648. (
  649. request.app.state.config.RAG_OPENAI_API_BASE_URL
  650. if request.app.state.config.RAG_EMBEDDING_ENGINE == "openai"
  651. else request.app.state.config.RAG_OLLAMA_BASE_URL
  652. ),
  653. (
  654. request.app.state.config.RAG_OPENAI_API_KEY
  655. if request.app.state.config.RAG_EMBEDDING_ENGINE == "openai"
  656. else request.app.state.config.RAG_OLLAMA_API_KEY
  657. ),
  658. request.app.state.config.RAG_EMBEDDING_BATCH_SIZE,
  659. )
  660. embeddings = embedding_function(
  661. list(map(lambda x: x.replace("\n", " "), texts))
  662. )
  663. items = [
  664. {
  665. "id": str(uuid.uuid4()),
  666. "text": text,
  667. "vector": embeddings[idx],
  668. "metadata": metadatas[idx],
  669. }
  670. for idx, text in enumerate(texts)
  671. ]
  672. VECTOR_DB_CLIENT.insert(
  673. collection_name=collection_name,
  674. items=items,
  675. )
  676. return True
  677. except Exception as e:
  678. log.exception(e)
  679. raise e
  680. class ProcessFileForm(BaseModel):
  681. file_id: str
  682. content: Optional[str] = None
  683. collection_name: Optional[str] = None
  684. @router.post("/process/file")
  685. def process_file(
  686. request: Request,
  687. form_data: ProcessFileForm,
  688. user=Depends(get_verified_user),
  689. ):
  690. try:
  691. file = Files.get_file_by_id(form_data.file_id)
  692. collection_name = form_data.collection_name
  693. if collection_name is None:
  694. collection_name = f"file-{file.id}"
  695. if form_data.content:
  696. # Update the content in the file
  697. # Usage: /files/{file_id}/data/content/update
  698. VECTOR_DB_CLIENT.delete_collection(collection_name=f"file-{file.id}")
  699. docs = [
  700. Document(
  701. page_content=form_data.content.replace("<br/>", "\n"),
  702. metadata={
  703. **file.meta,
  704. "name": file.filename,
  705. "created_by": file.user_id,
  706. "file_id": file.id,
  707. "source": file.filename,
  708. },
  709. )
  710. ]
  711. text_content = form_data.content
  712. elif form_data.collection_name:
  713. # Check if the file has already been processed and save the content
  714. # Usage: /knowledge/{id}/file/add, /knowledge/{id}/file/update
  715. result = VECTOR_DB_CLIENT.query(
  716. collection_name=f"file-{file.id}", filter={"file_id": file.id}
  717. )
  718. if result is not None and len(result.ids[0]) > 0:
  719. docs = [
  720. Document(
  721. page_content=result.documents[0][idx],
  722. metadata=result.metadatas[0][idx],
  723. )
  724. for idx, id in enumerate(result.ids[0])
  725. ]
  726. else:
  727. docs = [
  728. Document(
  729. page_content=file.data.get("content", ""),
  730. metadata={
  731. **file.meta,
  732. "name": file.filename,
  733. "created_by": file.user_id,
  734. "file_id": file.id,
  735. "source": file.filename,
  736. },
  737. )
  738. ]
  739. text_content = file.data.get("content", "")
  740. else:
  741. # Process the file and save the content
  742. # Usage: /files/
  743. file_path = file.path
  744. if file_path:
  745. file_path = Storage.get_file(file_path)
  746. loader = Loader(
  747. engine=request.app.state.config.CONTENT_EXTRACTION_ENGINE,
  748. TIKA_SERVER_URL=request.app.state.config.TIKA_SERVER_URL,
  749. PDF_EXTRACT_IMAGES=request.app.state.config.PDF_EXTRACT_IMAGES,
  750. )
  751. docs = loader.load(
  752. file.filename, file.meta.get("content_type"), file_path
  753. )
  754. docs = [
  755. Document(
  756. page_content=doc.page_content,
  757. metadata={
  758. **doc.metadata,
  759. "name": file.filename,
  760. "created_by": file.user_id,
  761. "file_id": file.id,
  762. "source": file.filename,
  763. },
  764. )
  765. for doc in docs
  766. ]
  767. else:
  768. docs = [
  769. Document(
  770. page_content=file.data.get("content", ""),
  771. metadata={
  772. **file.meta,
  773. "name": file.filename,
  774. "created_by": file.user_id,
  775. "file_id": file.id,
  776. "source": file.filename,
  777. },
  778. )
  779. ]
  780. text_content = " ".join([doc.page_content for doc in docs])
  781. log.debug(f"text_content: {text_content}")
  782. Files.update_file_data_by_id(
  783. file.id,
  784. {"content": text_content},
  785. )
  786. hash = calculate_sha256_string(text_content)
  787. Files.update_file_hash_by_id(file.id, hash)
  788. try:
  789. result = save_docs_to_vector_db(
  790. request,
  791. docs=docs,
  792. collection_name=collection_name,
  793. metadata={
  794. "file_id": file.id,
  795. "name": file.filename,
  796. "hash": hash,
  797. },
  798. add=(True if form_data.collection_name else False),
  799. )
  800. if result:
  801. Files.update_file_metadata_by_id(
  802. file.id,
  803. {
  804. "collection_name": collection_name,
  805. },
  806. )
  807. return {
  808. "status": True,
  809. "collection_name": collection_name,
  810. "filename": file.filename,
  811. "content": text_content,
  812. }
  813. except Exception as e:
  814. raise e
  815. except Exception as e:
  816. log.exception(e)
  817. if "No pandoc was found" in str(e):
  818. raise HTTPException(
  819. status_code=status.HTTP_400_BAD_REQUEST,
  820. detail=ERROR_MESSAGES.PANDOC_NOT_INSTALLED,
  821. )
  822. else:
  823. raise HTTPException(
  824. status_code=status.HTTP_400_BAD_REQUEST,
  825. detail=str(e),
  826. )
  827. class ProcessTextForm(BaseModel):
  828. name: str
  829. content: str
  830. collection_name: Optional[str] = None
  831. @router.post("/process/text")
  832. def process_text(
  833. request: Request,
  834. form_data: ProcessTextForm,
  835. user=Depends(get_verified_user),
  836. ):
  837. collection_name = form_data.collection_name
  838. if collection_name is None:
  839. collection_name = calculate_sha256_string(form_data.content)
  840. docs = [
  841. Document(
  842. page_content=form_data.content,
  843. metadata={"name": form_data.name, "created_by": user.id},
  844. )
  845. ]
  846. text_content = form_data.content
  847. log.debug(f"text_content: {text_content}")
  848. result = save_docs_to_vector_db(request, docs, collection_name)
  849. if result:
  850. return {
  851. "status": True,
  852. "collection_name": collection_name,
  853. "content": text_content,
  854. }
  855. else:
  856. raise HTTPException(
  857. status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
  858. detail=ERROR_MESSAGES.DEFAULT(),
  859. )
  860. @router.post("/process/youtube")
  861. def process_youtube_video(
  862. request: Request, form_data: ProcessUrlForm, user=Depends(get_verified_user)
  863. ):
  864. try:
  865. collection_name = form_data.collection_name
  866. if not collection_name:
  867. collection_name = calculate_sha256_string(form_data.url)[:63]
  868. loader = YoutubeLoader(
  869. form_data.url,
  870. language=request.app.state.config.YOUTUBE_LOADER_LANGUAGE,
  871. proxy_url=request.app.state.config.YOUTUBE_LOADER_PROXY_URL,
  872. )
  873. docs = loader.load()
  874. content = " ".join([doc.page_content for doc in docs])
  875. log.debug(f"text_content: {content}")
  876. save_docs_to_vector_db(request, docs, collection_name, overwrite=True)
  877. return {
  878. "status": True,
  879. "collection_name": collection_name,
  880. "filename": form_data.url,
  881. "file": {
  882. "data": {
  883. "content": content,
  884. },
  885. "meta": {
  886. "name": form_data.url,
  887. },
  888. },
  889. }
  890. except Exception as e:
  891. log.exception(e)
  892. raise HTTPException(
  893. status_code=status.HTTP_400_BAD_REQUEST,
  894. detail=ERROR_MESSAGES.DEFAULT(e),
  895. )
  896. @router.post("/process/web")
  897. def process_web(
  898. request: Request, form_data: ProcessUrlForm, user=Depends(get_verified_user)
  899. ):
  900. try:
  901. collection_name = form_data.collection_name
  902. if not collection_name:
  903. collection_name = calculate_sha256_string(form_data.url)[:63]
  904. loader = get_web_loader(
  905. form_data.url,
  906. verify_ssl=request.app.state.config.ENABLE_RAG_WEB_LOADER_SSL_VERIFICATION,
  907. requests_per_second=request.app.state.config.RAG_WEB_SEARCH_CONCURRENT_REQUESTS,
  908. )
  909. docs = loader.load()
  910. content = " ".join([doc.page_content for doc in docs])
  911. log.debug(f"text_content: {content}")
  912. save_docs_to_vector_db(request, docs, collection_name, overwrite=True)
  913. return {
  914. "status": True,
  915. "collection_name": collection_name,
  916. "filename": form_data.url,
  917. "file": {
  918. "data": {
  919. "content": content,
  920. },
  921. "meta": {
  922. "name": form_data.url,
  923. },
  924. },
  925. }
  926. except Exception as e:
  927. log.exception(e)
  928. raise HTTPException(
  929. status_code=status.HTTP_400_BAD_REQUEST,
  930. detail=ERROR_MESSAGES.DEFAULT(e),
  931. )
  932. def search_web(request: Request, engine: str, query: str) -> list[SearchResult]:
  933. """Search the web using a search engine and return the results as a list of SearchResult objects.
  934. Will look for a search engine API key in environment variables in the following order:
  935. - SEARXNG_QUERY_URL
  936. - GOOGLE_PSE_API_KEY + GOOGLE_PSE_ENGINE_ID
  937. - BRAVE_SEARCH_API_KEY
  938. - KAGI_SEARCH_API_KEY
  939. - MOJEEK_SEARCH_API_KEY
  940. - SERPSTACK_API_KEY
  941. - SERPER_API_KEY
  942. - SERPLY_API_KEY
  943. - TAVILY_API_KEY
  944. - SEARCHAPI_API_KEY + SEARCHAPI_ENGINE (by default `google`)
  945. Args:
  946. query (str): The query to search for
  947. """
  948. # TODO: add playwright to search the web
  949. if engine == "searxng":
  950. if request.app.state.config.SEARXNG_QUERY_URL:
  951. return search_searxng(
  952. request.app.state.config.SEARXNG_QUERY_URL,
  953. query,
  954. request.app.state.config.RAG_WEB_SEARCH_RESULT_COUNT,
  955. request.app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST,
  956. )
  957. else:
  958. raise Exception("No SEARXNG_QUERY_URL found in environment variables")
  959. elif engine == "google_pse":
  960. if (
  961. request.app.state.config.GOOGLE_PSE_API_KEY
  962. and request.app.state.config.GOOGLE_PSE_ENGINE_ID
  963. ):
  964. return search_google_pse(
  965. request.app.state.config.GOOGLE_PSE_API_KEY,
  966. request.app.state.config.GOOGLE_PSE_ENGINE_ID,
  967. query,
  968. request.app.state.config.RAG_WEB_SEARCH_RESULT_COUNT,
  969. request.app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST,
  970. )
  971. else:
  972. raise Exception(
  973. "No GOOGLE_PSE_API_KEY or GOOGLE_PSE_ENGINE_ID found in environment variables"
  974. )
  975. elif engine == "brave":
  976. if request.app.state.config.BRAVE_SEARCH_API_KEY:
  977. return search_brave(
  978. request.app.state.config.BRAVE_SEARCH_API_KEY,
  979. query,
  980. request.app.state.config.RAG_WEB_SEARCH_RESULT_COUNT,
  981. request.app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST,
  982. )
  983. else:
  984. raise Exception("No BRAVE_SEARCH_API_KEY found in environment variables")
  985. elif engine == "kagi":
  986. if request.app.state.config.KAGI_SEARCH_API_KEY:
  987. return search_kagi(
  988. request.app.state.config.KAGI_SEARCH_API_KEY,
  989. query,
  990. request.app.state.config.RAG_WEB_SEARCH_RESULT_COUNT,
  991. request.app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST,
  992. )
  993. else:
  994. raise Exception("No KAGI_SEARCH_API_KEY found in environment variables")
  995. elif engine == "mojeek":
  996. if request.app.state.config.MOJEEK_SEARCH_API_KEY:
  997. return search_mojeek(
  998. request.app.state.config.MOJEEK_SEARCH_API_KEY,
  999. query,
  1000. request.app.state.config.RAG_WEB_SEARCH_RESULT_COUNT,
  1001. request.app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST,
  1002. )
  1003. else:
  1004. raise Exception("No MOJEEK_SEARCH_API_KEY found in environment variables")
  1005. elif engine == "serpstack":
  1006. if request.app.state.config.SERPSTACK_API_KEY:
  1007. return search_serpstack(
  1008. request.app.state.config.SERPSTACK_API_KEY,
  1009. query,
  1010. request.app.state.config.RAG_WEB_SEARCH_RESULT_COUNT,
  1011. request.app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST,
  1012. https_enabled=request.app.state.config.SERPSTACK_HTTPS,
  1013. )
  1014. else:
  1015. raise Exception("No SERPSTACK_API_KEY found in environment variables")
  1016. elif engine == "serper":
  1017. if request.app.state.config.SERPER_API_KEY:
  1018. return search_serper(
  1019. request.app.state.config.SERPER_API_KEY,
  1020. query,
  1021. request.app.state.config.RAG_WEB_SEARCH_RESULT_COUNT,
  1022. request.app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST,
  1023. )
  1024. else:
  1025. raise Exception("No SERPER_API_KEY found in environment variables")
  1026. elif engine == "serply":
  1027. if request.app.state.config.SERPLY_API_KEY:
  1028. return search_serply(
  1029. request.app.state.config.SERPLY_API_KEY,
  1030. query,
  1031. request.app.state.config.RAG_WEB_SEARCH_RESULT_COUNT,
  1032. request.app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST,
  1033. )
  1034. else:
  1035. raise Exception("No SERPLY_API_KEY found in environment variables")
  1036. elif engine == "duckduckgo":
  1037. return search_duckduckgo(
  1038. query,
  1039. request.app.state.config.RAG_WEB_SEARCH_RESULT_COUNT,
  1040. request.app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST,
  1041. )
  1042. elif engine == "tavily":
  1043. if request.app.state.config.TAVILY_API_KEY:
  1044. return search_tavily(
  1045. request.app.state.config.TAVILY_API_KEY,
  1046. query,
  1047. request.app.state.config.RAG_WEB_SEARCH_RESULT_COUNT,
  1048. )
  1049. else:
  1050. raise Exception("No TAVILY_API_KEY found in environment variables")
  1051. elif engine == "searchapi":
  1052. if request.app.state.config.SEARCHAPI_API_KEY:
  1053. return search_searchapi(
  1054. request.app.state.config.SEARCHAPI_API_KEY,
  1055. request.app.state.config.SEARCHAPI_ENGINE,
  1056. query,
  1057. request.app.state.config.RAG_WEB_SEARCH_RESULT_COUNT,
  1058. request.app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST,
  1059. )
  1060. else:
  1061. raise Exception("No SEARCHAPI_API_KEY found in environment variables")
  1062. elif engine == "jina":
  1063. return search_jina(
  1064. request.app.state.config.JINA_API_KEY,
  1065. query,
  1066. request.app.state.config.RAG_WEB_SEARCH_RESULT_COUNT,
  1067. )
  1068. elif engine == "bing":
  1069. return search_bing(
  1070. request.app.state.config.BING_SEARCH_V7_SUBSCRIPTION_KEY,
  1071. request.app.state.config.BING_SEARCH_V7_ENDPOINT,
  1072. str(DEFAULT_LOCALE),
  1073. query,
  1074. request.app.state.config.RAG_WEB_SEARCH_RESULT_COUNT,
  1075. request.app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST,
  1076. )
  1077. else:
  1078. raise Exception("No search engine API key found in environment variables")
  1079. @router.post("/process/web/search")
  1080. async def process_web_search(
  1081. request: Request, form_data: SearchForm, user=Depends(get_verified_user)
  1082. ):
  1083. try:
  1084. logging.info(
  1085. f"trying to web search with {request.app.state.config.RAG_WEB_SEARCH_ENGINE, form_data.query}"
  1086. )
  1087. web_results = search_web(
  1088. request, request.app.state.config.RAG_WEB_SEARCH_ENGINE, form_data.query
  1089. )
  1090. except Exception as e:
  1091. log.exception(e)
  1092. raise HTTPException(
  1093. status_code=status.HTTP_400_BAD_REQUEST,
  1094. detail=ERROR_MESSAGES.WEB_SEARCH_ERROR(e),
  1095. )
  1096. log.debug(f"web_results: {web_results}")
  1097. try:
  1098. collection_name = form_data.collection_name
  1099. if collection_name == "" or collection_name is None:
  1100. collection_name = f"web-search-{calculate_sha256_string(form_data.query)}"[
  1101. :63
  1102. ]
  1103. urls = [result.link for result in web_results]
  1104. loader = get_web_loader(
  1105. urls,
  1106. verify_ssl=request.app.state.config.ENABLE_RAG_WEB_LOADER_SSL_VERIFICATION,
  1107. requests_per_second=request.app.state.config.RAG_WEB_SEARCH_CONCURRENT_REQUESTS,
  1108. )
  1109. docs = [doc async for doc in loader.alazy_load()]
  1110. # docs = loader.load()
  1111. save_docs_to_vector_db(request, docs, collection_name, overwrite=True)
  1112. return {
  1113. "status": True,
  1114. "collection_name": collection_name,
  1115. "filenames": urls,
  1116. }
  1117. except Exception as e:
  1118. log.exception(e)
  1119. raise HTTPException(
  1120. status_code=status.HTTP_400_BAD_REQUEST,
  1121. detail=ERROR_MESSAGES.DEFAULT(e),
  1122. )
  1123. class QueryDocForm(BaseModel):
  1124. collection_name: str
  1125. query: str
  1126. k: Optional[int] = None
  1127. r: Optional[float] = None
  1128. hybrid: Optional[bool] = None
  1129. @router.post("/query/doc")
  1130. def query_doc_handler(
  1131. request: Request,
  1132. form_data: QueryDocForm,
  1133. user=Depends(get_verified_user),
  1134. ):
  1135. try:
  1136. if request.app.state.config.ENABLE_RAG_HYBRID_SEARCH:
  1137. return query_doc_with_hybrid_search(
  1138. collection_name=form_data.collection_name,
  1139. query=form_data.query,
  1140. embedding_function=request.app.state.EMBEDDING_FUNCTION,
  1141. k=form_data.k if form_data.k else request.app.state.config.TOP_K,
  1142. reranking_function=request.app.state.rf,
  1143. r=(
  1144. form_data.r
  1145. if form_data.r
  1146. else request.app.state.config.RELEVANCE_THRESHOLD
  1147. ),
  1148. )
  1149. else:
  1150. return query_doc(
  1151. collection_name=form_data.collection_name,
  1152. query_embedding=request.app.state.EMBEDDING_FUNCTION(form_data.query),
  1153. k=form_data.k if form_data.k else request.app.state.config.TOP_K,
  1154. )
  1155. except Exception as e:
  1156. log.exception(e)
  1157. raise HTTPException(
  1158. status_code=status.HTTP_400_BAD_REQUEST,
  1159. detail=ERROR_MESSAGES.DEFAULT(e),
  1160. )
  1161. class QueryCollectionsForm(BaseModel):
  1162. collection_names: list[str]
  1163. query: str
  1164. k: Optional[int] = None
  1165. r: Optional[float] = None
  1166. hybrid: Optional[bool] = None
  1167. @router.post("/query/collection")
  1168. def query_collection_handler(
  1169. request: Request,
  1170. form_data: QueryCollectionsForm,
  1171. user=Depends(get_verified_user),
  1172. ):
  1173. try:
  1174. if request.app.state.config.ENABLE_RAG_HYBRID_SEARCH:
  1175. return query_collection_with_hybrid_search(
  1176. collection_names=form_data.collection_names,
  1177. queries=[form_data.query],
  1178. embedding_function=request.app.state.EMBEDDING_FUNCTION,
  1179. k=form_data.k if form_data.k else request.app.state.config.TOP_K,
  1180. reranking_function=request.app.state.rf,
  1181. r=(
  1182. form_data.r
  1183. if form_data.r
  1184. else request.app.state.config.RELEVANCE_THRESHOLD
  1185. ),
  1186. )
  1187. else:
  1188. return query_collection(
  1189. collection_names=form_data.collection_names,
  1190. queries=[form_data.query],
  1191. embedding_function=request.app.state.EMBEDDING_FUNCTION,
  1192. k=form_data.k if form_data.k else request.app.state.config.TOP_K,
  1193. )
  1194. except Exception as e:
  1195. log.exception(e)
  1196. raise HTTPException(
  1197. status_code=status.HTTP_400_BAD_REQUEST,
  1198. detail=ERROR_MESSAGES.DEFAULT(e),
  1199. )
  1200. ####################################
  1201. #
  1202. # Vector DB operations
  1203. #
  1204. ####################################
  1205. class DeleteForm(BaseModel):
  1206. collection_name: str
  1207. file_id: str
  1208. @router.post("/delete")
  1209. def delete_entries_from_collection(form_data: DeleteForm, user=Depends(get_admin_user)):
  1210. try:
  1211. if VECTOR_DB_CLIENT.has_collection(collection_name=form_data.collection_name):
  1212. file = Files.get_file_by_id(form_data.file_id)
  1213. hash = file.hash
  1214. VECTOR_DB_CLIENT.delete(
  1215. collection_name=form_data.collection_name,
  1216. metadata={"hash": hash},
  1217. )
  1218. return {"status": True}
  1219. else:
  1220. return {"status": False}
  1221. except Exception as e:
  1222. log.exception(e)
  1223. return {"status": False}
  1224. @router.post("/reset/db")
  1225. def reset_vector_db(user=Depends(get_admin_user)):
  1226. VECTOR_DB_CLIENT.reset()
  1227. Knowledges.delete_all_knowledge()
  1228. @router.post("/reset/uploads")
  1229. def reset_upload_dir(user=Depends(get_admin_user)) -> bool:
  1230. folder = f"{UPLOAD_DIR}"
  1231. try:
  1232. # Check if the directory exists
  1233. if os.path.exists(folder):
  1234. # Iterate over all the files and directories in the specified directory
  1235. for filename in os.listdir(folder):
  1236. file_path = os.path.join(folder, filename)
  1237. try:
  1238. if os.path.isfile(file_path) or os.path.islink(file_path):
  1239. os.unlink(file_path) # Remove the file or link
  1240. elif os.path.isdir(file_path):
  1241. shutil.rmtree(file_path) # Remove the directory
  1242. except Exception as e:
  1243. print(f"Failed to delete {file_path}. Reason: {e}")
  1244. else:
  1245. print(f"The directory {folder} does not exist")
  1246. except Exception as e:
  1247. print(f"Failed to process the directory {folder}. Reason: {e}")
  1248. return True
  1249. if ENV == "dev":
  1250. @router.get("/ef/{text}")
  1251. async def get_embeddings(request: Request, text: Optional[str] = "Hello World!"):
  1252. return {"result": request.app.state.EMBEDDING_FUNCTION(text)}
  1253. class BatchProcessFilesForm(BaseModel):
  1254. files: List[FileModel]
  1255. collection_name: str
  1256. class BatchProcessFilesResult(BaseModel):
  1257. file_id: str
  1258. status: str
  1259. error: Optional[str] = None
  1260. class BatchProcessFilesResponse(BaseModel):
  1261. results: List[BatchProcessFilesResult]
  1262. errors: List[BatchProcessFilesResult]
  1263. @router.post("/process/files/batch")
  1264. def process_files_batch(
  1265. request: Request,
  1266. form_data: BatchProcessFilesForm,
  1267. user=Depends(get_verified_user),
  1268. ) -> BatchProcessFilesResponse:
  1269. """
  1270. Process a batch of files and save them to the vector database.
  1271. """
  1272. results: List[BatchProcessFilesResult] = []
  1273. errors: List[BatchProcessFilesResult] = []
  1274. collection_name = form_data.collection_name
  1275. # Prepare all documents first
  1276. all_docs: List[Document] = []
  1277. for file in form_data.files:
  1278. try:
  1279. text_content = file.data.get("content", "")
  1280. docs: List[Document] = [
  1281. Document(
  1282. page_content=text_content.replace("<br/>", "\n"),
  1283. metadata={
  1284. **file.meta,
  1285. "name": file.filename,
  1286. "created_by": file.user_id,
  1287. "file_id": file.id,
  1288. "source": file.filename,
  1289. },
  1290. )
  1291. ]
  1292. hash = calculate_sha256_string(text_content)
  1293. Files.update_file_hash_by_id(file.id, hash)
  1294. Files.update_file_data_by_id(file.id, {"content": text_content})
  1295. all_docs.extend(docs)
  1296. results.append(BatchProcessFilesResult(file_id=file.id, status="prepared"))
  1297. except Exception as e:
  1298. log.error(f"process_files_batch: Error processing file {file.id}: {str(e)}")
  1299. errors.append(
  1300. BatchProcessFilesResult(file_id=file.id, status="failed", error=str(e))
  1301. )
  1302. # Save all documents in one batch
  1303. if all_docs:
  1304. try:
  1305. save_docs_to_vector_db(
  1306. request=request,
  1307. docs=all_docs,
  1308. collection_name=collection_name,
  1309. add=True,
  1310. )
  1311. # Update all files with collection name
  1312. for result in results:
  1313. Files.update_file_metadata_by_id(
  1314. result.file_id, {"collection_name": collection_name}
  1315. )
  1316. result.status = "completed"
  1317. except Exception as e:
  1318. log.error(
  1319. f"process_files_batch: Error saving documents to vector DB: {str(e)}"
  1320. )
  1321. for result in results:
  1322. result.status = "failed"
  1323. errors.append(
  1324. BatchProcessFilesResult(file_id=result.file_id, error=str(e))
  1325. )
  1326. return BatchProcessFilesResponse(results=results, errors=errors)