pgvector.py 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352
  1. from typing import Optional, List, Dict, Any
  2. from sqlalchemy import (
  3. cast,
  4. column,
  5. create_engine,
  6. Column,
  7. Integer,
  8. select,
  9. text,
  10. Text,
  11. values,
  12. )
  13. from sqlalchemy.sql import true
  14. from sqlalchemy.pool import NullPool
  15. from sqlalchemy.orm import declarative_base, scoped_session, sessionmaker
  16. from sqlalchemy.dialects.postgresql import JSONB, array
  17. from pgvector.sqlalchemy import Vector
  18. from sqlalchemy.ext.mutable import MutableDict
  19. from open_webui.apps.retrieval.vector.main import VectorItem, SearchResult, GetResult
  20. from open_webui.config import PGVECTOR_DB_URL
  21. VECTOR_LENGTH = 1536
  22. Base = declarative_base()
  23. class DocumentChunk(Base):
  24. __tablename__ = "document_chunk"
  25. id = Column(Text, primary_key=True)
  26. vector = Column(Vector(dim=VECTOR_LENGTH), nullable=True)
  27. collection_name = Column(Text, nullable=False)
  28. text = Column(Text, nullable=True)
  29. vmetadata = Column(MutableDict.as_mutable(JSONB), nullable=True)
  30. class PgvectorClient:
  31. def __init__(self) -> None:
  32. # if no pgvector uri, use the existing database connection
  33. if not PGVECTOR_DB_URL:
  34. from open_webui.apps.webui.internal.db import Session
  35. self.session = Session
  36. else:
  37. engine = create_engine(PGVECTOR_DB_URL, pool_pre_ping=True, poolclass=NullPool)
  38. SessionLocal = sessionmaker(
  39. autocommit=False, autoflush=False, bind=engine, expire_on_commit=False
  40. )
  41. self.session = scoped_session(SessionLocal)
  42. try:
  43. # Ensure the pgvector extension is available
  44. self.session.execute(text("CREATE EXTENSION IF NOT EXISTS vector;"))
  45. # Create the tables if they do not exist
  46. # Base.metadata.create_all requires a bind (engine or connection)
  47. # Get the connection from the session
  48. connection = self.session.connection()
  49. Base.metadata.create_all(bind=connection)
  50. # Create an index on the vector column if it doesn't exist
  51. self.session.execute(
  52. text(
  53. "CREATE INDEX IF NOT EXISTS idx_document_chunk_vector "
  54. "ON document_chunk USING ivfflat (vector vector_cosine_ops) WITH (lists = 100);"
  55. )
  56. )
  57. self.session.execute(
  58. text(
  59. "CREATE INDEX IF NOT EXISTS idx_document_chunk_collection_name "
  60. "ON document_chunk (collection_name);"
  61. )
  62. )
  63. self.session.commit()
  64. print("Initialization complete.")
  65. except Exception as e:
  66. self.session.rollback()
  67. print(f"Error during initialization: {e}")
  68. raise
  69. def adjust_vector_length(self, vector: List[float]) -> List[float]:
  70. # Adjust vector to have length VECTOR_LENGTH
  71. current_length = len(vector)
  72. if current_length < VECTOR_LENGTH:
  73. # Pad the vector with zeros
  74. vector += [0.0] * (VECTOR_LENGTH - current_length)
  75. elif current_length > VECTOR_LENGTH:
  76. raise Exception(
  77. f"Vector length {current_length} not supported. Max length must be <= {VECTOR_LENGTH}"
  78. )
  79. return vector
  80. def insert(self, collection_name: str, items: List[VectorItem]) -> None:
  81. try:
  82. new_items = []
  83. for item in items:
  84. vector = self.adjust_vector_length(item["vector"])
  85. new_chunk = DocumentChunk(
  86. id=item["id"],
  87. vector=vector,
  88. collection_name=collection_name,
  89. text=item["text"],
  90. vmetadata=item["metadata"],
  91. )
  92. new_items.append(new_chunk)
  93. self.session.bulk_save_objects(new_items)
  94. self.session.commit()
  95. print(
  96. f"Inserted {len(new_items)} items into collection '{collection_name}'."
  97. )
  98. except Exception as e:
  99. self.session.rollback()
  100. print(f"Error during insert: {e}")
  101. raise
  102. def upsert(self, collection_name: str, items: List[VectorItem]) -> None:
  103. try:
  104. for item in items:
  105. vector = self.adjust_vector_length(item["vector"])
  106. existing = (
  107. self.session.query(DocumentChunk)
  108. .filter(DocumentChunk.id == item["id"])
  109. .first()
  110. )
  111. if existing:
  112. existing.vector = vector
  113. existing.text = item["text"]
  114. existing.vmetadata = item["metadata"]
  115. existing.collection_name = (
  116. collection_name # Update collection_name if necessary
  117. )
  118. else:
  119. new_chunk = DocumentChunk(
  120. id=item["id"],
  121. vector=vector,
  122. collection_name=collection_name,
  123. text=item["text"],
  124. vmetadata=item["metadata"],
  125. )
  126. self.session.add(new_chunk)
  127. self.session.commit()
  128. print(f"Upserted {len(items)} items into collection '{collection_name}'.")
  129. except Exception as e:
  130. self.session.rollback()
  131. print(f"Error during upsert: {e}")
  132. raise
  133. def search(
  134. self,
  135. collection_name: str,
  136. vectors: List[List[float]],
  137. limit: Optional[int] = None,
  138. ) -> Optional[SearchResult]:
  139. try:
  140. if not vectors:
  141. return None
  142. # Adjust query vectors to VECTOR_LENGTH
  143. vectors = [self.adjust_vector_length(vector) for vector in vectors]
  144. num_queries = len(vectors)
  145. def vector_expr(vector):
  146. return cast(array(vector), Vector(VECTOR_LENGTH))
  147. # Create the values for query vectors
  148. qid_col = column("qid", Integer)
  149. q_vector_col = column("q_vector", Vector(VECTOR_LENGTH))
  150. query_vectors = (
  151. values(qid_col, q_vector_col)
  152. .data(
  153. [(idx, vector_expr(vector)) for idx, vector in enumerate(vectors)]
  154. )
  155. .alias("query_vectors")
  156. )
  157. # Build the lateral subquery for each query vector
  158. subq = (
  159. select(
  160. DocumentChunk.id,
  161. DocumentChunk.text,
  162. DocumentChunk.vmetadata,
  163. (
  164. DocumentChunk.vector.cosine_distance(query_vectors.c.q_vector)
  165. ).label("distance"),
  166. )
  167. .where(DocumentChunk.collection_name == collection_name)
  168. .order_by(
  169. (DocumentChunk.vector.cosine_distance(query_vectors.c.q_vector))
  170. )
  171. )
  172. if limit is not None:
  173. subq = subq.limit(limit)
  174. subq = subq.lateral("result")
  175. # Build the main query by joining query_vectors and the lateral subquery
  176. stmt = (
  177. select(
  178. query_vectors.c.qid,
  179. subq.c.id,
  180. subq.c.text,
  181. subq.c.vmetadata,
  182. subq.c.distance,
  183. )
  184. .select_from(query_vectors)
  185. .join(subq, true())
  186. .order_by(query_vectors.c.qid, subq.c.distance)
  187. )
  188. result_proxy = self.session.execute(stmt)
  189. results = result_proxy.all()
  190. ids = [[] for _ in range(num_queries)]
  191. distances = [[] for _ in range(num_queries)]
  192. documents = [[] for _ in range(num_queries)]
  193. metadatas = [[] for _ in range(num_queries)]
  194. if not results:
  195. return SearchResult(
  196. ids=ids,
  197. distances=distances,
  198. documents=documents,
  199. metadatas=metadatas,
  200. )
  201. for row in results:
  202. qid = int(row.qid)
  203. ids[qid].append(row.id)
  204. distances[qid].append(row.distance)
  205. documents[qid].append(row.text)
  206. metadatas[qid].append(row.vmetadata)
  207. return SearchResult(
  208. ids=ids, distances=distances, documents=documents, metadatas=metadatas
  209. )
  210. except Exception as e:
  211. print(f"Error during search: {e}")
  212. return None
  213. def query(
  214. self, collection_name: str, filter: Dict[str, Any], limit: Optional[int] = None
  215. ) -> Optional[GetResult]:
  216. try:
  217. query = self.session.query(DocumentChunk).filter(
  218. DocumentChunk.collection_name == collection_name
  219. )
  220. for key, value in filter.items():
  221. query = query.filter(DocumentChunk.vmetadata[key].astext == str(value))
  222. if limit is not None:
  223. query = query.limit(limit)
  224. results = query.all()
  225. if not results:
  226. return None
  227. ids = [[result.id for result in results]]
  228. documents = [[result.text for result in results]]
  229. metadatas = [[result.vmetadata for result in results]]
  230. return GetResult(
  231. ids=ids,
  232. documents=documents,
  233. metadatas=metadatas,
  234. )
  235. except Exception as e:
  236. print(f"Error during query: {e}")
  237. return None
  238. def get(
  239. self, collection_name: str, limit: Optional[int] = None
  240. ) -> Optional[GetResult]:
  241. try:
  242. query = self.session.query(DocumentChunk).filter(
  243. DocumentChunk.collection_name == collection_name
  244. )
  245. if limit is not None:
  246. query = query.limit(limit)
  247. results = query.all()
  248. if not results:
  249. return None
  250. ids = [[result.id for result in results]]
  251. documents = [[result.text for result in results]]
  252. metadatas = [[result.vmetadata for result in results]]
  253. return GetResult(ids=ids, documents=documents, metadatas=metadatas)
  254. except Exception as e:
  255. print(f"Error during get: {e}")
  256. return None
  257. def delete(
  258. self,
  259. collection_name: str,
  260. ids: Optional[List[str]] = None,
  261. filter: Optional[Dict[str, Any]] = None,
  262. ) -> None:
  263. try:
  264. query = self.session.query(DocumentChunk).filter(
  265. DocumentChunk.collection_name == collection_name
  266. )
  267. if ids:
  268. query = query.filter(DocumentChunk.id.in_(ids))
  269. if filter:
  270. for key, value in filter.items():
  271. query = query.filter(
  272. DocumentChunk.vmetadata[key].astext == str(value)
  273. )
  274. deleted = query.delete(synchronize_session=False)
  275. self.session.commit()
  276. print(f"Deleted {deleted} items from collection '{collection_name}'.")
  277. except Exception as e:
  278. self.session.rollback()
  279. print(f"Error during delete: {e}")
  280. raise
  281. def reset(self) -> None:
  282. try:
  283. deleted = self.session.query(DocumentChunk).delete()
  284. self.session.commit()
  285. print(
  286. f"Reset complete. Deleted {deleted} items from 'document_chunk' table."
  287. )
  288. except Exception as e:
  289. self.session.rollback()
  290. print(f"Error during reset: {e}")
  291. raise
  292. def close(self) -> None:
  293. pass
  294. def has_collection(self, collection_name: str) -> bool:
  295. try:
  296. exists = (
  297. self.session.query(DocumentChunk)
  298. .filter(DocumentChunk.collection_name == collection_name)
  299. .first()
  300. is not None
  301. )
  302. return exists
  303. except Exception as e:
  304. print(f"Error checking collection existence: {e}")
  305. return False
  306. def delete_collection(self, collection_name: str) -> None:
  307. self.delete(collection_name)
  308. print(f"Collection '{collection_name}' deleted.")