123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702 |
- import hashlib
- import json
- import logging
- import os
- import uuid
- from functools import lru_cache
- from pathlib import Path
- from pydub import AudioSegment
- from pydub.silence import split_on_silence
- import requests
- from open_webui.config import (
- AUDIO_STT_ENGINE,
- AUDIO_STT_MODEL,
- AUDIO_STT_OPENAI_API_BASE_URL,
- AUDIO_STT_OPENAI_API_KEY,
- AUDIO_TTS_API_KEY,
- AUDIO_TTS_ENGINE,
- AUDIO_TTS_MODEL,
- AUDIO_TTS_OPENAI_API_BASE_URL,
- AUDIO_TTS_OPENAI_API_KEY,
- AUDIO_TTS_SPLIT_ON,
- AUDIO_TTS_VOICE,
- AUDIO_TTS_AZURE_SPEECH_REGION,
- AUDIO_TTS_AZURE_SPEECH_OUTPUT_FORMAT,
- CACHE_DIR,
- CORS_ALLOW_ORIGIN,
- WHISPER_MODEL,
- WHISPER_MODEL_AUTO_UPDATE,
- WHISPER_MODEL_DIR,
- AppConfig,
- )
- from open_webui.constants import ERROR_MESSAGES
- from open_webui.env import SRC_LOG_LEVELS, DEVICE_TYPE, ENABLE_FORWARD_USER_INFO_HEADERS
- from fastapi import Depends, FastAPI, File, HTTPException, Request, UploadFile, status
- from fastapi.middleware.cors import CORSMiddleware
- from fastapi.responses import FileResponse
- from pydantic import BaseModel
- from open_webui.utils.utils import get_admin_user, get_verified_user
- # Constants
- MAX_FILE_SIZE_MB = 25
- MAX_FILE_SIZE = MAX_FILE_SIZE_MB * 1024 * 1024 # Convert MB to bytes
- log = logging.getLogger(__name__)
- log.setLevel(SRC_LOG_LEVELS["AUDIO"])
- app = FastAPI()
- app.add_middleware(
- CORSMiddleware,
- allow_origins=CORS_ALLOW_ORIGIN,
- allow_credentials=True,
- allow_methods=["*"],
- allow_headers=["*"],
- )
- app.state.config = AppConfig()
- app.state.config.STT_OPENAI_API_BASE_URL = AUDIO_STT_OPENAI_API_BASE_URL
- app.state.config.STT_OPENAI_API_KEY = AUDIO_STT_OPENAI_API_KEY
- app.state.config.STT_ENGINE = AUDIO_STT_ENGINE
- app.state.config.STT_MODEL = AUDIO_STT_MODEL
- app.state.config.WHISPER_MODEL = WHISPER_MODEL
- app.state.faster_whisper_model = None
- app.state.config.TTS_OPENAI_API_BASE_URL = AUDIO_TTS_OPENAI_API_BASE_URL
- app.state.config.TTS_OPENAI_API_KEY = AUDIO_TTS_OPENAI_API_KEY
- app.state.config.TTS_ENGINE = AUDIO_TTS_ENGINE
- app.state.config.TTS_MODEL = AUDIO_TTS_MODEL
- app.state.config.TTS_VOICE = AUDIO_TTS_VOICE
- app.state.config.TTS_API_KEY = AUDIO_TTS_API_KEY
- app.state.config.TTS_SPLIT_ON = AUDIO_TTS_SPLIT_ON
- app.state.speech_synthesiser = None
- app.state.speech_speaker_embeddings_dataset = None
- app.state.config.TTS_AZURE_SPEECH_REGION = AUDIO_TTS_AZURE_SPEECH_REGION
- app.state.config.TTS_AZURE_SPEECH_OUTPUT_FORMAT = AUDIO_TTS_AZURE_SPEECH_OUTPUT_FORMAT
- # setting device type for whisper model
- whisper_device_type = DEVICE_TYPE if DEVICE_TYPE and DEVICE_TYPE == "cuda" else "cpu"
- log.info(f"whisper_device_type: {whisper_device_type}")
- SPEECH_CACHE_DIR = Path(CACHE_DIR).joinpath("./audio/speech/")
- SPEECH_CACHE_DIR.mkdir(parents=True, exist_ok=True)
- def set_faster_whisper_model(model: str, auto_update: bool = False):
- if model and app.state.config.STT_ENGINE == "":
- from faster_whisper import WhisperModel
- faster_whisper_kwargs = {
- "model_size_or_path": model,
- "device": whisper_device_type,
- "compute_type": "int8",
- "download_root": WHISPER_MODEL_DIR,
- "local_files_only": not auto_update,
- }
- try:
- app.state.faster_whisper_model = WhisperModel(**faster_whisper_kwargs)
- except Exception:
- log.warning(
- "WhisperModel initialization failed, attempting download with local_files_only=False"
- )
- faster_whisper_kwargs["local_files_only"] = False
- app.state.faster_whisper_model = WhisperModel(**faster_whisper_kwargs)
- else:
- app.state.faster_whisper_model = None
- class TTSConfigForm(BaseModel):
- OPENAI_API_BASE_URL: str
- OPENAI_API_KEY: str
- API_KEY: str
- ENGINE: str
- MODEL: str
- VOICE: str
- SPLIT_ON: str
- AZURE_SPEECH_REGION: str
- AZURE_SPEECH_OUTPUT_FORMAT: str
- class STTConfigForm(BaseModel):
- OPENAI_API_BASE_URL: str
- OPENAI_API_KEY: str
- ENGINE: str
- MODEL: str
- WHISPER_MODEL: str
- class AudioConfigUpdateForm(BaseModel):
- tts: TTSConfigForm
- stt: STTConfigForm
- from pydub import AudioSegment
- from pydub.utils import mediainfo
- def is_mp4_audio(file_path):
- """Check if the given file is an MP4 audio file."""
- if not os.path.isfile(file_path):
- print(f"File not found: {file_path}")
- return False
- info = mediainfo(file_path)
- if (
- info.get("codec_name") == "aac"
- and info.get("codec_type") == "audio"
- and info.get("codec_tag_string") == "mp4a"
- ):
- return True
- return False
- def convert_mp4_to_wav(file_path, output_path):
- """Convert MP4 audio file to WAV format."""
- audio = AudioSegment.from_file(file_path, format="mp4")
- audio.export(output_path, format="wav")
- print(f"Converted {file_path} to {output_path}")
- @app.get("/config")
- async def get_audio_config(user=Depends(get_admin_user)):
- return {
- "tts": {
- "OPENAI_API_BASE_URL": app.state.config.TTS_OPENAI_API_BASE_URL,
- "OPENAI_API_KEY": app.state.config.TTS_OPENAI_API_KEY,
- "API_KEY": app.state.config.TTS_API_KEY,
- "ENGINE": app.state.config.TTS_ENGINE,
- "MODEL": app.state.config.TTS_MODEL,
- "VOICE": app.state.config.TTS_VOICE,
- "SPLIT_ON": app.state.config.TTS_SPLIT_ON,
- "AZURE_SPEECH_REGION": app.state.config.TTS_AZURE_SPEECH_REGION,
- "AZURE_SPEECH_OUTPUT_FORMAT": app.state.config.TTS_AZURE_SPEECH_OUTPUT_FORMAT,
- },
- "stt": {
- "OPENAI_API_BASE_URL": app.state.config.STT_OPENAI_API_BASE_URL,
- "OPENAI_API_KEY": app.state.config.STT_OPENAI_API_KEY,
- "ENGINE": app.state.config.STT_ENGINE,
- "MODEL": app.state.config.STT_MODEL,
- "WHISPER_MODEL": app.state.config.WHISPER_MODEL,
- },
- }
- @app.post("/config/update")
- async def update_audio_config(
- form_data: AudioConfigUpdateForm, user=Depends(get_admin_user)
- ):
- app.state.config.TTS_OPENAI_API_BASE_URL = form_data.tts.OPENAI_API_BASE_URL
- app.state.config.TTS_OPENAI_API_KEY = form_data.tts.OPENAI_API_KEY
- app.state.config.TTS_API_KEY = form_data.tts.API_KEY
- app.state.config.TTS_ENGINE = form_data.tts.ENGINE
- app.state.config.TTS_MODEL = form_data.tts.MODEL
- app.state.config.TTS_VOICE = form_data.tts.VOICE
- app.state.config.TTS_SPLIT_ON = form_data.tts.SPLIT_ON
- app.state.config.TTS_AZURE_SPEECH_REGION = form_data.tts.AZURE_SPEECH_REGION
- app.state.config.TTS_AZURE_SPEECH_OUTPUT_FORMAT = (
- form_data.tts.AZURE_SPEECH_OUTPUT_FORMAT
- )
- app.state.config.STT_OPENAI_API_BASE_URL = form_data.stt.OPENAI_API_BASE_URL
- app.state.config.STT_OPENAI_API_KEY = form_data.stt.OPENAI_API_KEY
- app.state.config.STT_ENGINE = form_data.stt.ENGINE
- app.state.config.STT_MODEL = form_data.stt.MODEL
- app.state.config.WHISPER_MODEL = form_data.stt.WHISPER_MODEL
- set_faster_whisper_model(form_data.stt.WHISPER_MODEL, WHISPER_MODEL_AUTO_UPDATE)
- return {
- "tts": {
- "OPENAI_API_BASE_URL": app.state.config.TTS_OPENAI_API_BASE_URL,
- "OPENAI_API_KEY": app.state.config.TTS_OPENAI_API_KEY,
- "API_KEY": app.state.config.TTS_API_KEY,
- "ENGINE": app.state.config.TTS_ENGINE,
- "MODEL": app.state.config.TTS_MODEL,
- "VOICE": app.state.config.TTS_VOICE,
- "SPLIT_ON": app.state.config.TTS_SPLIT_ON,
- "AZURE_SPEECH_REGION": app.state.config.TTS_AZURE_SPEECH_REGION,
- "AZURE_SPEECH_OUTPUT_FORMAT": app.state.config.TTS_AZURE_SPEECH_OUTPUT_FORMAT,
- },
- "stt": {
- "OPENAI_API_BASE_URL": app.state.config.STT_OPENAI_API_BASE_URL,
- "OPENAI_API_KEY": app.state.config.STT_OPENAI_API_KEY,
- "ENGINE": app.state.config.STT_ENGINE,
- "MODEL": app.state.config.STT_MODEL,
- "WHISPER_MODEL": app.state.config.WHISPER_MODEL,
- },
- }
- def load_speech_pipeline():
- from transformers import pipeline
- from datasets import load_dataset
- if app.state.speech_synthesiser is None:
- app.state.speech_synthesiser = pipeline(
- "text-to-speech", "microsoft/speecht5_tts"
- )
- if app.state.speech_speaker_embeddings_dataset is None:
- app.state.speech_speaker_embeddings_dataset = load_dataset(
- "Matthijs/cmu-arctic-xvectors", split="validation"
- )
- @app.post("/speech")
- async def speech(request: Request, user=Depends(get_verified_user)):
- body = await request.body()
- name = hashlib.sha256(body).hexdigest()
- file_path = SPEECH_CACHE_DIR.joinpath(f"{name}.mp3")
- file_body_path = SPEECH_CACHE_DIR.joinpath(f"{name}.json")
- # Check if the file already exists in the cache
- if file_path.is_file():
- return FileResponse(file_path)
- if app.state.config.TTS_ENGINE == "openai":
- headers = {}
- headers["Authorization"] = f"Bearer {app.state.config.TTS_OPENAI_API_KEY}"
- headers["Content-Type"] = "application/json"
- if ENABLE_FORWARD_USER_INFO_HEADERS:
- headers["X-OpenWebUI-User-Name"] = user.name
- headers["X-OpenWebUI-User-Id"] = user.id
- headers["X-OpenWebUI-User-Email"] = user.email
- headers["X-OpenWebUI-User-Role"] = user.role
- try:
- body = body.decode("utf-8")
- body = json.loads(body)
- body["model"] = app.state.config.TTS_MODEL
- body = json.dumps(body).encode("utf-8")
- except Exception:
- pass
- r = None
- try:
- r = requests.post(
- url=f"{app.state.config.TTS_OPENAI_API_BASE_URL}/audio/speech",
- data=body,
- headers=headers,
- stream=True,
- )
- r.raise_for_status()
- # Save the streaming content to a file
- with open(file_path, "wb") as f:
- for chunk in r.iter_content(chunk_size=8192):
- f.write(chunk)
- with open(file_body_path, "w") as f:
- json.dump(json.loads(body.decode("utf-8")), f)
- # Return the saved file
- return FileResponse(file_path)
- except Exception as e:
- log.exception(e)
- error_detail = "Open WebUI: Server Connection Error"
- if r is not None:
- try:
- res = r.json()
- if "error" in res:
- error_detail = f"External: {res['error']['message']}"
- except Exception:
- error_detail = f"External: {e}"
- raise HTTPException(
- status_code=r.status_code if r != None else 500,
- detail=error_detail,
- )
- elif app.state.config.TTS_ENGINE == "elevenlabs":
- payload = None
- try:
- payload = json.loads(body.decode("utf-8"))
- except Exception as e:
- log.exception(e)
- raise HTTPException(status_code=400, detail="Invalid JSON payload")
- voice_id = payload.get("voice", "")
- if voice_id not in get_available_voices():
- raise HTTPException(
- status_code=400,
- detail="Invalid voice id",
- )
- url = f"https://api.elevenlabs.io/v1/text-to-speech/{voice_id}"
- headers = {
- "Accept": "audio/mpeg",
- "Content-Type": "application/json",
- "xi-api-key": app.state.config.TTS_API_KEY,
- }
- data = {
- "text": payload["input"],
- "model_id": app.state.config.TTS_MODEL,
- "voice_settings": {"stability": 0.5, "similarity_boost": 0.5},
- }
- try:
- r = requests.post(url, json=data, headers=headers)
- r.raise_for_status()
- # Save the streaming content to a file
- with open(file_path, "wb") as f:
- for chunk in r.iter_content(chunk_size=8192):
- f.write(chunk)
- with open(file_body_path, "w") as f:
- json.dump(json.loads(body.decode("utf-8")), f)
- # Return the saved file
- return FileResponse(file_path)
- except Exception as e:
- log.exception(e)
- error_detail = "Open WebUI: Server Connection Error"
- if r is not None:
- try:
- res = r.json()
- if "error" in res:
- error_detail = f"External: {res['error']['message']}"
- except Exception:
- error_detail = f"External: {e}"
- raise HTTPException(
- status_code=r.status_code if r != None else 500,
- detail=error_detail,
- )
- elif app.state.config.TTS_ENGINE == "azure":
- payload = None
- try:
- payload = json.loads(body.decode("utf-8"))
- except Exception as e:
- log.exception(e)
- raise HTTPException(status_code=400, detail="Invalid JSON payload")
- region = app.state.config.TTS_AZURE_SPEECH_REGION
- language = app.state.config.TTS_VOICE
- locale = "-".join(app.state.config.TTS_VOICE.split("-")[:1])
- output_format = app.state.config.TTS_AZURE_SPEECH_OUTPUT_FORMAT
- url = f"https://{region}.tts.speech.microsoft.com/cognitiveservices/v1"
- headers = {
- "Ocp-Apim-Subscription-Key": app.state.config.TTS_API_KEY,
- "Content-Type": "application/ssml+xml",
- "X-Microsoft-OutputFormat": output_format,
- }
- data = f"""<speak version="1.0" xmlns="http://www.w3.org/2001/10/synthesis" xml:lang="{locale}">
- <voice name="{language}">{payload["input"]}</voice>
- </speak>"""
- response = requests.post(url, headers=headers, data=data)
- if response.status_code == 200:
- with open(file_path, "wb") as f:
- f.write(response.content)
- return FileResponse(file_path)
- else:
- log.error(f"Error synthesizing speech - {response.reason}")
- raise HTTPException(
- status_code=500, detail=f"Error synthesizing speech - {response.reason}"
- )
- elif app.state.config.TTS_ENGINE == "transformers":
- payload = None
- try:
- payload = json.loads(body.decode("utf-8"))
- except Exception as e:
- log.exception(e)
- raise HTTPException(status_code=400, detail="Invalid JSON payload")
- import torch
- import soundfile as sf
- load_speech_pipeline()
- embeddings_dataset = app.state.speech_speaker_embeddings_dataset
- speaker_index = 6799
- try:
- speaker_index = embeddings_dataset["filename"].index(
- app.state.config.TTS_MODEL
- )
- except Exception:
- pass
- speaker_embedding = torch.tensor(
- embeddings_dataset[speaker_index]["xvector"]
- ).unsqueeze(0)
- speech = app.state.speech_synthesiser(
- payload["input"],
- forward_params={"speaker_embeddings": speaker_embedding},
- )
- sf.write(file_path, speech["audio"], samplerate=speech["sampling_rate"])
- with open(file_body_path, "w") as f:
- json.dump(json.loads(body.decode("utf-8")), f)
- return FileResponse(file_path)
- def transcribe(file_path):
- print("transcribe", file_path)
- filename = os.path.basename(file_path)
- file_dir = os.path.dirname(file_path)
- id = filename.split(".")[0]
- if app.state.config.STT_ENGINE == "":
- if app.state.faster_whisper_model is None:
- set_faster_whisper_model(app.state.config.WHISPER_MODEL)
- model = app.state.faster_whisper_model
- segments, info = model.transcribe(file_path, beam_size=5)
- log.info(
- "Detected language '%s' with probability %f"
- % (info.language, info.language_probability)
- )
- transcript = "".join([segment.text for segment in list(segments)])
- data = {"text": transcript.strip()}
- # save the transcript to a json file
- transcript_file = f"{file_dir}/{id}.json"
- with open(transcript_file, "w") as f:
- json.dump(data, f)
- log.debug(data)
- return data
- elif app.state.config.STT_ENGINE == "openai":
- if is_mp4_audio(file_path):
- print("is_mp4_audio")
- os.rename(file_path, file_path.replace(".wav", ".mp4"))
- # Convert MP4 audio file to WAV format
- convert_mp4_to_wav(file_path.replace(".wav", ".mp4"), file_path)
- headers = {"Authorization": f"Bearer {app.state.config.STT_OPENAI_API_KEY}"}
- files = {"file": (filename, open(file_path, "rb"))}
- data = {"model": app.state.config.STT_MODEL}
- log.debug(files, data)
- r = None
- try:
- r = requests.post(
- url=f"{app.state.config.STT_OPENAI_API_BASE_URL}/audio/transcriptions",
- headers=headers,
- files=files,
- data=data,
- )
- r.raise_for_status()
- data = r.json()
- # save the transcript to a json file
- transcript_file = f"{file_dir}/{id}.json"
- with open(transcript_file, "w") as f:
- json.dump(data, f)
- print(data)
- return data
- except Exception as e:
- log.exception(e)
- error_detail = "Open WebUI: Server Connection Error"
- if r is not None:
- try:
- res = r.json()
- if "error" in res:
- error_detail = f"External: {res['error']['message']}"
- except Exception:
- error_detail = f"External: {e}"
- raise Exception(error_detail)
- @app.post("/transcriptions")
- def transcription(
- file: UploadFile = File(...),
- user=Depends(get_verified_user),
- ):
- log.info(f"file.content_type: {file.content_type}")
- if file.content_type not in ["audio/mpeg", "audio/wav", "audio/ogg", "audio/x-m4a"]:
- raise HTTPException(
- status_code=status.HTTP_400_BAD_REQUEST,
- detail=ERROR_MESSAGES.FILE_NOT_SUPPORTED,
- )
- try:
- ext = file.filename.split(".")[-1]
- id = uuid.uuid4()
- filename = f"{id}.{ext}"
- contents = file.file.read()
- file_dir = f"{CACHE_DIR}/audio/transcriptions"
- os.makedirs(file_dir, exist_ok=True)
- file_path = f"{file_dir}/{filename}"
- with open(file_path, "wb") as f:
- f.write(contents)
- try:
- if os.path.getsize(file_path) > MAX_FILE_SIZE: # file is bigger than 25MB
- log.debug(f"File size is larger than {MAX_FILE_SIZE_MB}MB")
- audio = AudioSegment.from_file(file_path)
- audio = audio.set_frame_rate(16000).set_channels(1) # Compress audio
- compressed_path = f"{file_dir}/{id}_compressed.opus"
- audio.export(compressed_path, format="opus", bitrate="32k")
- log.debug(f"Compressed audio to {compressed_path}")
- file_path = compressed_path
- if (
- os.path.getsize(file_path) > MAX_FILE_SIZE
- ): # Still larger than 25MB after compression
- log.debug(
- f"Compressed file size is still larger than {MAX_FILE_SIZE_MB}MB: {os.path.getsize(file_path)}"
- )
- raise HTTPException(
- status_code=status.HTTP_400_BAD_REQUEST,
- detail=ERROR_MESSAGES.FILE_TOO_LARGE(
- size=f"{MAX_FILE_SIZE_MB}MB"
- ),
- )
- data = transcribe(file_path)
- else:
- data = transcribe(file_path)
- file_path = file_path.split("/")[-1]
- return {**data, "filename": file_path}
- except Exception as e:
- log.exception(e)
- raise HTTPException(
- status_code=status.HTTP_400_BAD_REQUEST,
- detail=ERROR_MESSAGES.DEFAULT(e),
- )
- except Exception as e:
- log.exception(e)
- raise HTTPException(
- status_code=status.HTTP_400_BAD_REQUEST,
- detail=ERROR_MESSAGES.DEFAULT(e),
- )
- def get_available_models() -> list[dict]:
- if app.state.config.TTS_ENGINE == "openai":
- return [{"id": "tts-1"}, {"id": "tts-1-hd"}]
- elif app.state.config.TTS_ENGINE == "elevenlabs":
- headers = {
- "xi-api-key": app.state.config.TTS_API_KEY,
- "Content-Type": "application/json",
- }
- try:
- response = requests.get(
- "https://api.elevenlabs.io/v1/models", headers=headers, timeout=5
- )
- response.raise_for_status()
- models = response.json()
- return [
- {"name": model["name"], "id": model["model_id"]} for model in models
- ]
- except requests.RequestException as e:
- log.error(f"Error fetching voices: {str(e)}")
- return []
- @app.get("/models")
- async def get_models(user=Depends(get_verified_user)):
- return {"models": get_available_models()}
- def get_available_voices() -> dict:
- """Returns {voice_id: voice_name} dict"""
- ret = {}
- if app.state.config.TTS_ENGINE == "openai":
- ret = {
- "alloy": "alloy",
- "echo": "echo",
- "fable": "fable",
- "onyx": "onyx",
- "nova": "nova",
- "shimmer": "shimmer",
- }
- elif app.state.config.TTS_ENGINE == "elevenlabs":
- try:
- ret = get_elevenlabs_voices()
- except Exception:
- # Avoided @lru_cache with exception
- pass
- elif app.state.config.TTS_ENGINE == "azure":
- try:
- region = app.state.config.TTS_AZURE_SPEECH_REGION
- url = f"https://{region}.tts.speech.microsoft.com/cognitiveservices/voices/list"
- headers = {"Ocp-Apim-Subscription-Key": app.state.config.TTS_API_KEY}
- response = requests.get(url, headers=headers)
- response.raise_for_status()
- voices = response.json()
- for voice in voices:
- ret[voice["ShortName"]] = (
- f"{voice['DisplayName']} ({voice['ShortName']})"
- )
- except requests.RequestException as e:
- log.error(f"Error fetching voices: {str(e)}")
- return ret
- @lru_cache
- def get_elevenlabs_voices() -> dict:
- """
- Note, set the following in your .env file to use Elevenlabs:
- AUDIO_TTS_ENGINE=elevenlabs
- AUDIO_TTS_API_KEY=sk_... # Your Elevenlabs API key
- AUDIO_TTS_VOICE=EXAVITQu4vr4xnSDxMaL # From https://api.elevenlabs.io/v1/voices
- AUDIO_TTS_MODEL=eleven_multilingual_v2
- """
- headers = {
- "xi-api-key": app.state.config.TTS_API_KEY,
- "Content-Type": "application/json",
- }
- try:
- # TODO: Add retries
- response = requests.get("https://api.elevenlabs.io/v1/voices", headers=headers)
- response.raise_for_status()
- voices_data = response.json()
- voices = {}
- for voice in voices_data.get("voices", []):
- voices[voice["voice_id"]] = voice["name"]
- except requests.RequestException as e:
- # Avoid @lru_cache with exception
- log.error(f"Error fetching voices: {str(e)}")
- raise RuntimeError(f"Error fetching voices: {str(e)}")
- return voices
- @app.get("/voices")
- async def get_voices(user=Depends(get_verified_user)):
- return {"voices": [{"id": k, "name": v} for k, v in get_available_voices().items()]}
|