utils.py 8.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268
  1. import os
  2. import re
  3. import logging
  4. from typing import List
  5. import requests
  6. from huggingface_hub import snapshot_download
  7. from config import SRC_LOG_LEVELS, CHROMA_CLIENT
  8. log = logging.getLogger(__name__)
  9. log.setLevel(SRC_LOG_LEVELS["RAG"])
  10. def query_doc(collection_name: str, query: str, k: int, embedding_function):
  11. try:
  12. # if you use docker use the model from the environment variable
  13. collection = CHROMA_CLIENT.get_collection(
  14. name=collection_name,
  15. embedding_function=embedding_function,
  16. )
  17. result = collection.query(
  18. query_texts=[query],
  19. n_results=k,
  20. )
  21. return result
  22. except Exception as e:
  23. raise e
  24. def query_embeddings_doc(collection_name: str, query_embeddings, k: int):
  25. try:
  26. # if you use docker use the model from the environment variable
  27. collection = CHROMA_CLIENT.get_collection(
  28. name=collection_name,
  29. )
  30. result = collection.query(
  31. query_embeddings=[query_embeddings],
  32. n_results=k,
  33. )
  34. return result
  35. except Exception as e:
  36. raise e
  37. def merge_and_sort_query_results(query_results, k):
  38. # Initialize lists to store combined data
  39. combined_ids = []
  40. combined_distances = []
  41. combined_metadatas = []
  42. combined_documents = []
  43. # Combine data from each dictionary
  44. for data in query_results:
  45. combined_ids.extend(data["ids"][0])
  46. combined_distances.extend(data["distances"][0])
  47. combined_metadatas.extend(data["metadatas"][0])
  48. combined_documents.extend(data["documents"][0])
  49. # Create a list of tuples (distance, id, metadata, document)
  50. combined = list(
  51. zip(combined_distances, combined_ids, combined_metadatas, combined_documents)
  52. )
  53. # Sort the list based on distances
  54. combined.sort(key=lambda x: x[0])
  55. # Unzip the sorted list
  56. sorted_distances, sorted_ids, sorted_metadatas, sorted_documents = zip(*combined)
  57. # Slicing the lists to include only k elements
  58. sorted_distances = list(sorted_distances)[:k]
  59. sorted_ids = list(sorted_ids)[:k]
  60. sorted_metadatas = list(sorted_metadatas)[:k]
  61. sorted_documents = list(sorted_documents)[:k]
  62. # Create the output dictionary
  63. merged_query_results = {
  64. "ids": [sorted_ids],
  65. "distances": [sorted_distances],
  66. "metadatas": [sorted_metadatas],
  67. "documents": [sorted_documents],
  68. "embeddings": None,
  69. "uris": None,
  70. "data": None,
  71. }
  72. return merged_query_results
  73. def query_collection(
  74. collection_names: List[str], query: str, k: int, embedding_function
  75. ):
  76. results = []
  77. for collection_name in collection_names:
  78. try:
  79. # if you use docker use the model from the environment variable
  80. collection = CHROMA_CLIENT.get_collection(
  81. name=collection_name,
  82. embedding_function=embedding_function,
  83. )
  84. result = collection.query(
  85. query_texts=[query],
  86. n_results=k,
  87. )
  88. results.append(result)
  89. except:
  90. pass
  91. return merge_and_sort_query_results(results, k)
  92. def query_embeddings_collection(collection_names: List[str], query_embeddings, k: int):
  93. results = []
  94. for collection_name in collection_names:
  95. try:
  96. collection = CHROMA_CLIENT.get_collection(name=collection_name)
  97. result = collection.query(
  98. query_embeddings=[query_embeddings],
  99. n_results=k,
  100. )
  101. results.append(result)
  102. except:
  103. pass
  104. return merge_and_sort_query_results(results, k)
  105. def rag_template(template: str, context: str, query: str):
  106. template = template.replace("[context]", context)
  107. template = template.replace("[query]", query)
  108. return template
  109. def rag_messages(docs, messages, template, k, embedding_function):
  110. log.debug(f"docs: {docs}")
  111. last_user_message_idx = None
  112. for i in range(len(messages) - 1, -1, -1):
  113. if messages[i]["role"] == "user":
  114. last_user_message_idx = i
  115. break
  116. user_message = messages[last_user_message_idx]
  117. if isinstance(user_message["content"], list):
  118. # Handle list content input
  119. content_type = "list"
  120. query = ""
  121. for content_item in user_message["content"]:
  122. if content_item["type"] == "text":
  123. query = content_item["text"]
  124. break
  125. elif isinstance(user_message["content"], str):
  126. # Handle text content input
  127. content_type = "text"
  128. query = user_message["content"]
  129. else:
  130. # Fallback in case the input does not match expected types
  131. content_type = None
  132. query = ""
  133. relevant_contexts = []
  134. for doc in docs:
  135. context = None
  136. try:
  137. if doc["type"] == "collection":
  138. context = query_collection(
  139. collection_names=doc["collection_names"],
  140. query=query,
  141. k=k,
  142. embedding_function=embedding_function,
  143. )
  144. elif doc["type"] == "text":
  145. context = doc["content"]
  146. else:
  147. context = query_doc(
  148. collection_name=doc["collection_name"],
  149. query=query,
  150. k=k,
  151. embedding_function=embedding_function,
  152. )
  153. except Exception as e:
  154. log.exception(e)
  155. context = None
  156. relevant_contexts.append(context)
  157. log.debug(f"relevant_contexts: {relevant_contexts}")
  158. context_string = ""
  159. for context in relevant_contexts:
  160. if context:
  161. context_string += " ".join(context["documents"][0]) + "\n"
  162. ra_content = rag_template(
  163. template=template,
  164. context=context_string,
  165. query=query,
  166. )
  167. if content_type == "list":
  168. new_content = []
  169. for content_item in user_message["content"]:
  170. if content_item["type"] == "text":
  171. # Update the text item's content with ra_content
  172. new_content.append({"type": "text", "text": ra_content})
  173. else:
  174. # Keep other types of content as they are
  175. new_content.append(content_item)
  176. new_user_message = {**user_message, "content": new_content}
  177. else:
  178. new_user_message = {
  179. **user_message,
  180. "content": ra_content,
  181. }
  182. messages[last_user_message_idx] = new_user_message
  183. return messages
  184. def get_embedding_model_path(
  185. embedding_model: str, update_embedding_model: bool = False
  186. ):
  187. # Construct huggingface_hub kwargs with local_files_only to return the snapshot path
  188. cache_dir = os.getenv("SENTENCE_TRANSFORMERS_HOME")
  189. local_files_only = not update_embedding_model
  190. snapshot_kwargs = {
  191. "cache_dir": cache_dir,
  192. "local_files_only": local_files_only,
  193. }
  194. log.debug(f"embedding_model: {embedding_model}")
  195. log.debug(f"snapshot_kwargs: {snapshot_kwargs}")
  196. # Inspiration from upstream sentence_transformers
  197. if (
  198. os.path.exists(embedding_model)
  199. or ("\\" in embedding_model or embedding_model.count("/") > 1)
  200. and local_files_only
  201. ):
  202. # If fully qualified path exists, return input, else set repo_id
  203. return embedding_model
  204. elif "/" not in embedding_model:
  205. # Set valid repo_id for model short-name
  206. embedding_model = "sentence-transformers" + "/" + embedding_model
  207. snapshot_kwargs["repo_id"] = embedding_model
  208. # Attempt to query the huggingface_hub library to determine the local path and/or to update
  209. try:
  210. embedding_model_repo_path = snapshot_download(**snapshot_kwargs)
  211. log.debug(f"embedding_model_repo_path: {embedding_model_repo_path}")
  212. return embedding_model_repo_path
  213. except Exception as e:
  214. log.exception(f"Cannot determine embedding model snapshot path: {e}")
  215. return embedding_model