qdrant.py 6.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176
  1. from typing import Optional
  2. from qdrant_client import QdrantClient as Qclient
  3. from qdrant_client.http.models import PointStruct
  4. from qdrant_client.models import models
  5. from open_webui.apps.retrieval.vector.main import VectorItem, SearchResult, GetResult
  6. from open_webui.config import QDRANT_URI
  7. class QdrantClient:
  8. def __init__(self):
  9. self.collection_prefix = "open-webui"
  10. self.QDRANT_URI = QDRANT_URI
  11. self.client = Qclient(url=self.QDRANT_URI) if self.QDRANT_URI else None
  12. def _result_to_get_result(self, points) -> GetResult:
  13. ids = []
  14. documents = []
  15. metadatas = []
  16. for point in points:
  17. payload = point.payload
  18. ids.append(point.id)
  19. documents.append(payload["text"])
  20. metadatas.append(payload["metadata"])
  21. return GetResult(
  22. **{
  23. "ids": [ids],
  24. "documents": [documents],
  25. "metadatas": [metadatas],
  26. }
  27. )
  28. def _create_collection(self, collection_name: str, dimension: int):
  29. collection_name_with_prefix = f"{self.collection_prefix}_{collection_name}"
  30. self.client.create_collection(
  31. collection_name=collection_name_with_prefix,
  32. vectors_config=models.VectorParams(size=dimension, distance=models.Distance.COSINE),
  33. )
  34. print(f"collection {collection_name_with_prefix} successfully created!")
  35. def _create_collection_if_not_exists(self, collection_name, dimension):
  36. if not self.has_collection(
  37. collection_name=collection_name
  38. ):
  39. self._create_collection(
  40. collection_name=collection_name, dimension=dimension
  41. )
  42. def has_collection(self, collection_name: str) -> bool:
  43. return self.client.collection_exists(f"{self.collection_prefix}_{collection_name}")
  44. def delete_collection(self, collection_name: str):
  45. return self.client.delete_collection(collection_name=f"{self.collection_prefix}_{collection_name}")
  46. def search(
  47. self, collection_name: str, vectors: list[list[float | int]], limit: int
  48. ) -> Optional[SearchResult]:
  49. # Search for the nearest neighbor items based on the vectors and return 'limit' number of results.
  50. if limit is None:
  51. limit=10000000 # otherwise qdrant would set limit to 10!
  52. query_response = self.client.query_points(
  53. collection_name=f"{self.collection_prefix}_{collection_name}",
  54. query=vectors[0],
  55. limit=limit,
  56. )
  57. get_result = self._result_to_get_result(query_response.points)
  58. return SearchResult(
  59. ids=get_result.ids,
  60. documents=get_result.documents,
  61. metadatas=get_result.metadatas,
  62. distances=[[point.score for point in query_response.points]]
  63. )
  64. def query(self, collection_name: str, filter: dict, limit: Optional[int] = None):
  65. # Construct the filter string for querying
  66. if not self.has_collection(collection_name):
  67. return None
  68. try:
  69. if limit is None:
  70. limit=10000000 # otherwise qdrant would set limit to 10!
  71. field_conditions = []
  72. for key, value in filter.items():
  73. field_conditions.append(
  74. models.FieldCondition(key=f"metadata.{key}", match=models.MatchValue(value=value)))
  75. points = self.client.query_points(
  76. collection_name=f"{self.collection_prefix}_{collection_name}",
  77. query_filter=models.Filter(should=field_conditions),
  78. limit=limit,
  79. )
  80. return self._result_to_get_result(points.points)
  81. except Exception as e:
  82. print(e)
  83. return None
  84. def get(self, collection_name: str) -> Optional[GetResult]:
  85. # Get all the items in the collection.
  86. points = self.client.query_points(
  87. collection_name=f"{self.collection_prefix}_{collection_name}",
  88. limit=10000000 # default is 10
  89. )
  90. return self._result_to_get_result(points.points)
  91. def insert(self, collection_name: str, items: list[VectorItem]):
  92. # Insert the items into the collection, if the collection does not exist, it will be created.
  93. self._create_collection_if_not_exists(collection_name, len(items[0]["vector"]))
  94. points = self.create_points(items)
  95. self.client.upload_points(f"{self.collection_prefix}_{collection_name}", points)
  96. def upsert(self, collection_name: str, items: list[VectorItem]):
  97. # Update the items in the collection, if the items are not present, insert them. If the collection does not exist, it will be created.
  98. self._create_collection_if_not_exists(collection_name, len(items[0]["vector"]))
  99. points = self.create_points(items)
  100. return self.client.upsert(f"{self.collection_prefix}_{collection_name}", points)
  101. def delete(
  102. self,
  103. collection_name: str,
  104. ids: Optional[list[str]] = None,
  105. filter: Optional[dict] = None,
  106. ):
  107. # Delete the items from the collection based on the ids.
  108. field_conditions = []
  109. if ids:
  110. for id_value in ids:
  111. field_conditions.append(
  112. models.FieldCondition(
  113. key="metadata.id",
  114. match=models.MatchValue(value=id_value),
  115. ),
  116. ),
  117. elif filter:
  118. for key, value in filter.items():
  119. field_conditions.append(
  120. models.FieldCondition(
  121. key=f"metadata.{key}",
  122. match=models.MatchValue(value=value),
  123. ),
  124. ),
  125. return self.client.delete(
  126. collection_name=f"{self.collection_prefix}_{collection_name}",
  127. points_selector=models.FilterSelector(
  128. filter=models.Filter(
  129. must=field_conditions
  130. )
  131. ),
  132. )
  133. def reset(self):
  134. # Resets the database. This will delete all collections and item entries.
  135. collection_names = self.client.get_collections().collections
  136. for collection_name in collection_names:
  137. if collection_name.name.startswith(self.collection_prefix):
  138. self.client.delete_collection(collection_name=collection_name.name)
  139. def create_points(self, items: list[VectorItem]):
  140. points = []
  141. for idx, item in enumerate(items):
  142. points.append(
  143. PointStruct(
  144. id=item["id"],
  145. vector=item["vector"],
  146. payload={
  147. "text": item["text"],
  148. "metadata": item["metadata"]
  149. },
  150. )
  151. )
  152. return points