opensearch.py 7.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212
  1. from opensearchpy import OpenSearch
  2. from typing import Optional
  3. from open_webui.retrieval.vector.main import VectorItem, SearchResult, GetResult
  4. from open_webui.config import (
  5. OPENSEARCH_URI,
  6. OPENSEARCH_SSL,
  7. OPENSEARCH_CERT_VERIFY,
  8. OPENSEARCH_USERNAME,
  9. OPENSEARCH_PASSWORD,
  10. )
  11. class OpenSearchClient:
  12. def __init__(self):
  13. self.index_prefix = "open_webui"
  14. self.client = OpenSearch(
  15. hosts=[OPENSEARCH_URI],
  16. use_ssl=OPENSEARCH_SSL,
  17. verify_certs=OPENSEARCH_CERT_VERIFY,
  18. http_auth=(OPENSEARCH_USERNAME, OPENSEARCH_PASSWORD),
  19. )
  20. def _result_to_get_result(self, result) -> GetResult:
  21. ids = []
  22. documents = []
  23. metadatas = []
  24. for hit in result["hits"]["hits"]:
  25. ids.append(hit["_id"])
  26. documents.append(hit["_source"].get("text"))
  27. metadatas.append(hit["_source"].get("metadata"))
  28. return GetResult(ids=ids, documents=documents, metadatas=metadatas)
  29. def _result_to_search_result(self, result) -> SearchResult:
  30. ids = []
  31. distances = []
  32. documents = []
  33. metadatas = []
  34. for hit in result["hits"]["hits"]:
  35. ids.append(hit["_id"])
  36. distances.append(hit["_score"])
  37. documents.append(hit["_source"].get("text"))
  38. metadatas.append(hit["_source"].get("metadata"))
  39. return SearchResult(
  40. ids=ids, distances=distances, documents=documents, metadatas=metadatas
  41. )
  42. def _create_index(self, index_name: str, dimension: int):
  43. body = {
  44. "mappings": {
  45. "properties": {
  46. "id": {"type": "keyword"},
  47. "vector": {
  48. "type": "dense_vector",
  49. "dims": dimension, # Adjust based on your vector dimensions
  50. "index": true,
  51. "similarity": "faiss",
  52. "method": {
  53. "name": "hnsw",
  54. "space_type": "ip", # Use inner product to approximate cosine similarity
  55. "engine": "faiss",
  56. "ef_construction": 128,
  57. "m": 16,
  58. },
  59. },
  60. "text": {"type": "text"},
  61. "metadata": {"type": "object"},
  62. }
  63. }
  64. }
  65. self.client.indices.create(index=f"{self.index_prefix}_{index_name}", body=body)
  66. def _create_batches(self, items: list[VectorItem], batch_size=100):
  67. for i in range(0, len(items), batch_size):
  68. yield items[i : i + batch_size]
  69. def has_collection(self, index_name: str) -> bool:
  70. # has_collection here means has index.
  71. # We are simply adapting to the norms of the other DBs.
  72. return self.client.indices.exists(index=f"{self.index_prefix}_{index_name}")
  73. def delete_colleciton(self, index_name: str):
  74. # delete_collection here means delete index.
  75. # We are simply adapting to the norms of the other DBs.
  76. self.client.indices.delete(index=f"{self.index_prefix}_{index_name}")
  77. def search(
  78. self, index_name: str, vectors: list[list[float]], limit: int
  79. ) -> Optional[SearchResult]:
  80. query = {
  81. "size": limit,
  82. "_source": ["text", "metadata"],
  83. "query": {
  84. "script_score": {
  85. "query": {"match_all": {}},
  86. "script": {
  87. "source": "cosineSimilarity(params.vector, 'vector') + 1.0",
  88. "params": {
  89. "vector": vectors[0]
  90. }, # Assuming single query vector
  91. },
  92. }
  93. },
  94. }
  95. result = self.client.search(
  96. index=f"{self.index_prefix}_{index_name}", body=query
  97. )
  98. return self._result_to_search_result(result)
  99. def query(
  100. self, collection_name: str, filter: dict, limit: Optional[int] = None
  101. ) -> Optional[GetResult]:
  102. if not self.has_collection(collection_name):
  103. return None
  104. query_body = {
  105. "query": {
  106. "bool": {
  107. "filter": []
  108. }
  109. },
  110. "_source": ["text", "metadata"],
  111. }
  112. for field, value in filter.items():
  113. query_body["query"]["bool"]["filter"].append({
  114. "term": {field: value}
  115. })
  116. size = limit if limit else 10
  117. try:
  118. result = self.client.search(
  119. index=f"{self.index_prefix}_{collection_name}",
  120. body=query_body,
  121. size=size
  122. )
  123. return self._result_to_get_result(result)
  124. except Exception as e:
  125. return None
  126. def get_or_create_index(self, index_name: str, dimension: int):
  127. if not self.has_index(index_name):
  128. self._create_index(index_name, dimension)
  129. def get(self, index_name: str) -> Optional[GetResult]:
  130. query = {"query": {"match_all": {}}, "_source": ["text", "metadata"]}
  131. result = self.client.search(
  132. index=f"{self.index_prefix}_{index_name}", body=query
  133. )
  134. return self._result_to_get_result(result)
  135. def insert(self, index_name: str, items: list[VectorItem]):
  136. if not self.has_index(index_name):
  137. self._create_index(index_name, dimension=len(items[0]["vector"]))
  138. for batch in self._create_batches(items):
  139. actions = [
  140. {
  141. "index": {
  142. "_id": item["id"],
  143. "_source": {
  144. "vector": item["vector"],
  145. "text": item["text"],
  146. "metadata": item["metadata"],
  147. },
  148. }
  149. }
  150. for item in batch
  151. ]
  152. self.client.bulk(actions)
  153. def upsert(self, index_name: str, items: list[VectorItem]):
  154. if not self.has_index(index_name):
  155. self._create_index(index_name, dimension=len(items[0]["vector"]))
  156. for batch in self._create_batches(items):
  157. actions = [
  158. {
  159. "index": {
  160. "_id": item["id"],
  161. "_source": {
  162. "vector": item["vector"],
  163. "text": item["text"],
  164. "metadata": item["metadata"],
  165. },
  166. }
  167. }
  168. for item in batch
  169. ]
  170. self.client.bulk(actions)
  171. def delete(self, index_name: str, ids: list[str]):
  172. actions = [
  173. {"delete": {"_index": f"{self.index_prefix}_{index_name}", "_id": id}}
  174. for id in ids
  175. ]
  176. self.client.bulk(body=actions)
  177. def reset(self):
  178. indices = self.client.indices.get(index=f"{self.index_prefix}_*")
  179. for index in indices:
  180. self.client.indices.delete(index=index)