retrieval.py 56 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589
  1. import json
  2. import logging
  3. import mimetypes
  4. import os
  5. import shutil
  6. import uuid
  7. from datetime import datetime
  8. from pathlib import Path
  9. from typing import Iterator, List, Optional, Sequence, Union
  10. from fastapi import (
  11. Depends,
  12. FastAPI,
  13. File,
  14. Form,
  15. HTTPException,
  16. UploadFile,
  17. Request,
  18. status,
  19. APIRouter,
  20. )
  21. from fastapi.middleware.cors import CORSMiddleware
  22. from pydantic import BaseModel
  23. import tiktoken
  24. from langchain.text_splitter import RecursiveCharacterTextSplitter, TokenTextSplitter
  25. from langchain_core.documents import Document
  26. from open_webui.models.files import FileModel, Files
  27. from open_webui.models.knowledge import Knowledges
  28. from open_webui.storage.provider import Storage
  29. from open_webui.retrieval.vector.connector import VECTOR_DB_CLIENT
  30. # Document loaders
  31. from open_webui.retrieval.loaders.main import Loader
  32. from open_webui.retrieval.loaders.youtube import YoutubeLoader
  33. # Web search engines
  34. from open_webui.retrieval.web.main import SearchResult
  35. from open_webui.retrieval.web.utils import get_web_loader
  36. from open_webui.retrieval.web.brave import search_brave
  37. from open_webui.retrieval.web.kagi import search_kagi
  38. from open_webui.retrieval.web.mojeek import search_mojeek
  39. from open_webui.retrieval.web.duckduckgo import search_duckduckgo
  40. from open_webui.retrieval.web.google_pse import search_google_pse
  41. from open_webui.retrieval.web.jina_search import search_jina
  42. from open_webui.retrieval.web.searchapi import search_searchapi
  43. from open_webui.retrieval.web.searxng import search_searxng
  44. from open_webui.retrieval.web.serper import search_serper
  45. from open_webui.retrieval.web.serply import search_serply
  46. from open_webui.retrieval.web.serpstack import search_serpstack
  47. from open_webui.retrieval.web.tavily import search_tavily
  48. from open_webui.retrieval.web.bing import search_bing
  49. from open_webui.retrieval.web.exa import search_exa
  50. from open_webui.retrieval.utils import (
  51. get_embedding_function,
  52. get_model_path,
  53. query_collection,
  54. query_collection_with_hybrid_search,
  55. query_doc,
  56. query_doc_with_hybrid_search,
  57. )
  58. from open_webui.utils.misc import (
  59. calculate_sha256_string,
  60. )
  61. from open_webui.utils.auth import get_admin_user, get_verified_user
  62. from open_webui.config import (
  63. ENV,
  64. RAG_EMBEDDING_MODEL_AUTO_UPDATE,
  65. RAG_EMBEDDING_MODEL_TRUST_REMOTE_CODE,
  66. RAG_RERANKING_MODEL_AUTO_UPDATE,
  67. RAG_RERANKING_MODEL_TRUST_REMOTE_CODE,
  68. UPLOAD_DIR,
  69. DEFAULT_LOCALE,
  70. )
  71. from open_webui.env import (
  72. SRC_LOG_LEVELS,
  73. DEVICE_TYPE,
  74. DOCKER,
  75. )
  76. from open_webui.constants import ERROR_MESSAGES
  77. log = logging.getLogger(__name__)
  78. log.setLevel(SRC_LOG_LEVELS["RAG"])
  79. ##########################################
  80. #
  81. # Utility functions
  82. #
  83. ##########################################
  84. def get_ef(
  85. engine: str,
  86. embedding_model: str,
  87. auto_update: bool = False,
  88. ):
  89. ef = None
  90. if embedding_model and engine == "":
  91. from sentence_transformers import SentenceTransformer
  92. try:
  93. ef = SentenceTransformer(
  94. get_model_path(embedding_model, auto_update),
  95. device=DEVICE_TYPE,
  96. trust_remote_code=RAG_EMBEDDING_MODEL_TRUST_REMOTE_CODE,
  97. )
  98. except Exception as e:
  99. log.debug(f"Error loading SentenceTransformer: {e}")
  100. return ef
  101. def get_rf(
  102. reranking_model: str,
  103. auto_update: bool = False,
  104. ):
  105. rf = None
  106. if reranking_model:
  107. if any(model in reranking_model for model in ["jinaai/jina-colbert-v2"]):
  108. try:
  109. from open_webui.retrieval.models.colbert import ColBERT
  110. rf = ColBERT(
  111. get_model_path(reranking_model, auto_update),
  112. env="docker" if DOCKER else None,
  113. )
  114. except Exception as e:
  115. log.error(f"ColBERT: {e}")
  116. raise Exception(ERROR_MESSAGES.DEFAULT(e))
  117. else:
  118. import sentence_transformers
  119. try:
  120. rf = sentence_transformers.CrossEncoder(
  121. get_model_path(reranking_model, auto_update),
  122. device=DEVICE_TYPE,
  123. trust_remote_code=RAG_RERANKING_MODEL_TRUST_REMOTE_CODE,
  124. )
  125. except:
  126. log.error("CrossEncoder error")
  127. raise Exception(ERROR_MESSAGES.DEFAULT("CrossEncoder error"))
  128. return rf
  129. ##########################################
  130. #
  131. # API routes
  132. #
  133. ##########################################
  134. router = APIRouter()
  135. class CollectionNameForm(BaseModel):
  136. collection_name: Optional[str] = None
  137. class ProcessUrlForm(CollectionNameForm):
  138. url: str
  139. class SearchForm(CollectionNameForm):
  140. query: str
  141. @router.get("/")
  142. async def get_status(request: Request):
  143. return {
  144. "status": True,
  145. "chunk_size": request.app.state.config.CHUNK_SIZE,
  146. "chunk_overlap": request.app.state.config.CHUNK_OVERLAP,
  147. "template": request.app.state.config.RAG_TEMPLATE,
  148. "embedding_engine": request.app.state.config.RAG_EMBEDDING_ENGINE,
  149. "embedding_model": request.app.state.config.RAG_EMBEDDING_MODEL,
  150. "reranking_model": request.app.state.config.RAG_RERANKING_MODEL,
  151. "embedding_batch_size": request.app.state.config.RAG_EMBEDDING_BATCH_SIZE,
  152. }
  153. @router.get("/embedding")
  154. async def get_embedding_config(request: Request, user=Depends(get_admin_user)):
  155. return {
  156. "status": True,
  157. "embedding_engine": request.app.state.config.RAG_EMBEDDING_ENGINE,
  158. "embedding_model": request.app.state.config.RAG_EMBEDDING_MODEL,
  159. "embedding_batch_size": request.app.state.config.RAG_EMBEDDING_BATCH_SIZE,
  160. "openai_config": {
  161. "url": request.app.state.config.RAG_OPENAI_API_BASE_URL,
  162. "key": request.app.state.config.RAG_OPENAI_API_KEY,
  163. },
  164. "ollama_config": {
  165. "url": request.app.state.config.RAG_OLLAMA_BASE_URL,
  166. "key": request.app.state.config.RAG_OLLAMA_API_KEY,
  167. },
  168. }
  169. @router.get("/reranking")
  170. async def get_reraanking_config(request: Request, user=Depends(get_admin_user)):
  171. return {
  172. "status": True,
  173. "reranking_model": request.app.state.config.RAG_RERANKING_MODEL,
  174. }
  175. class OpenAIConfigForm(BaseModel):
  176. url: str
  177. key: str
  178. class OllamaConfigForm(BaseModel):
  179. url: str
  180. key: str
  181. class EmbeddingModelUpdateForm(BaseModel):
  182. openai_config: Optional[OpenAIConfigForm] = None
  183. ollama_config: Optional[OllamaConfigForm] = None
  184. embedding_engine: str
  185. embedding_model: str
  186. embedding_batch_size: Optional[int] = 1
  187. @router.post("/embedding/update")
  188. async def update_embedding_config(
  189. request: Request, form_data: EmbeddingModelUpdateForm, user=Depends(get_admin_user)
  190. ):
  191. log.info(
  192. f"Updating embedding model: {request.app.state.config.RAG_EMBEDDING_MODEL} to {form_data.embedding_model}"
  193. )
  194. try:
  195. request.app.state.config.RAG_EMBEDDING_ENGINE = form_data.embedding_engine
  196. request.app.state.config.RAG_EMBEDDING_MODEL = form_data.embedding_model
  197. if request.app.state.config.RAG_EMBEDDING_ENGINE in ["ollama", "openai"]:
  198. if form_data.openai_config is not None:
  199. request.app.state.config.RAG_OPENAI_API_BASE_URL = (
  200. form_data.openai_config.url
  201. )
  202. request.app.state.config.RAG_OPENAI_API_KEY = (
  203. form_data.openai_config.key
  204. )
  205. if form_data.ollama_config is not None:
  206. request.app.state.config.RAG_OLLAMA_BASE_URL = (
  207. form_data.ollama_config.url
  208. )
  209. request.app.state.config.RAG_OLLAMA_API_KEY = (
  210. form_data.ollama_config.key
  211. )
  212. request.app.state.config.RAG_EMBEDDING_BATCH_SIZE = (
  213. form_data.embedding_batch_size
  214. )
  215. request.app.state.ef = get_ef(
  216. request.app.state.config.RAG_EMBEDDING_ENGINE,
  217. request.app.state.config.RAG_EMBEDDING_MODEL,
  218. )
  219. request.app.state.EMBEDDING_FUNCTION = get_embedding_function(
  220. request.app.state.config.RAG_EMBEDDING_ENGINE,
  221. request.app.state.config.RAG_EMBEDDING_MODEL,
  222. request.app.state.ef,
  223. (
  224. request.app.state.config.RAG_OPENAI_API_BASE_URL
  225. if request.app.state.config.RAG_EMBEDDING_ENGINE == "openai"
  226. else request.app.state.config.RAG_OLLAMA_BASE_URL
  227. ),
  228. (
  229. request.app.state.config.RAG_OPENAI_API_KEY
  230. if request.app.state.config.RAG_EMBEDDING_ENGINE == "openai"
  231. else request.app.state.config.RAG_OLLAMA_API_KEY
  232. ),
  233. request.app.state.config.RAG_EMBEDDING_BATCH_SIZE,
  234. )
  235. return {
  236. "status": True,
  237. "embedding_engine": request.app.state.config.RAG_EMBEDDING_ENGINE,
  238. "embedding_model": request.app.state.config.RAG_EMBEDDING_MODEL,
  239. "embedding_batch_size": request.app.state.config.RAG_EMBEDDING_BATCH_SIZE,
  240. "openai_config": {
  241. "url": request.app.state.config.RAG_OPENAI_API_BASE_URL,
  242. "key": request.app.state.config.RAG_OPENAI_API_KEY,
  243. },
  244. "ollama_config": {
  245. "url": request.app.state.config.RAG_OLLAMA_BASE_URL,
  246. "key": request.app.state.config.RAG_OLLAMA_API_KEY,
  247. },
  248. }
  249. except Exception as e:
  250. log.exception(f"Problem updating embedding model: {e}")
  251. raise HTTPException(
  252. status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
  253. detail=ERROR_MESSAGES.DEFAULT(e),
  254. )
  255. class RerankingModelUpdateForm(BaseModel):
  256. reranking_model: str
  257. @router.post("/reranking/update")
  258. async def update_reranking_config(
  259. request: Request, form_data: RerankingModelUpdateForm, user=Depends(get_admin_user)
  260. ):
  261. log.info(
  262. f"Updating reranking model: {request.app.state.config.RAG_RERANKING_MODEL} to {form_data.reranking_model}"
  263. )
  264. try:
  265. request.app.state.config.RAG_RERANKING_MODEL = form_data.reranking_model
  266. try:
  267. request.app.state.rf = get_rf(
  268. request.app.state.config.RAG_RERANKING_MODEL,
  269. True,
  270. )
  271. except Exception as e:
  272. log.error(f"Error loading reranking model: {e}")
  273. request.app.state.config.ENABLE_RAG_HYBRID_SEARCH = False
  274. return {
  275. "status": True,
  276. "reranking_model": request.app.state.config.RAG_RERANKING_MODEL,
  277. }
  278. except Exception as e:
  279. log.exception(f"Problem updating reranking model: {e}")
  280. raise HTTPException(
  281. status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
  282. detail=ERROR_MESSAGES.DEFAULT(e),
  283. )
  284. @router.get("/config")
  285. async def get_rag_config(request: Request, user=Depends(get_admin_user)):
  286. return {
  287. "status": True,
  288. "pdf_extract_images": request.app.state.config.PDF_EXTRACT_IMAGES,
  289. "enable_google_drive_integration": request.app.state.config.ENABLE_GOOGLE_DRIVE_INTEGRATION,
  290. "content_extraction": {
  291. "engine": request.app.state.config.CONTENT_EXTRACTION_ENGINE,
  292. "tika_server_url": request.app.state.config.TIKA_SERVER_URL,
  293. "document_intelligence_config": {
  294. "endpoint": request.app.state.config.DOCUMENT_INTELLIGENCE_ENDPOINT,
  295. "key": request.app.state.config.DOCUMENT_INTELLIGENCE_KEY,
  296. },
  297. },
  298. "chunk": {
  299. "text_splitter": request.app.state.config.TEXT_SPLITTER,
  300. "chunk_size": request.app.state.config.CHUNK_SIZE,
  301. "chunk_overlap": request.app.state.config.CHUNK_OVERLAP,
  302. },
  303. "file": {
  304. "max_size": request.app.state.config.FILE_MAX_SIZE,
  305. "max_count": request.app.state.config.FILE_MAX_COUNT,
  306. },
  307. "youtube": {
  308. "language": request.app.state.config.YOUTUBE_LOADER_LANGUAGE,
  309. "translation": request.app.state.YOUTUBE_LOADER_TRANSLATION,
  310. "proxy_url": request.app.state.config.YOUTUBE_LOADER_PROXY_URL,
  311. },
  312. "web": {
  313. "web_loader_ssl_verification": request.app.state.config.ENABLE_RAG_WEB_LOADER_SSL_VERIFICATION,
  314. "search": {
  315. "enabled": request.app.state.config.ENABLE_RAG_WEB_SEARCH,
  316. "drive": request.app.state.config.ENABLE_GOOGLE_DRIVE_INTEGRATION,
  317. "engine": request.app.state.config.RAG_WEB_SEARCH_ENGINE,
  318. "searxng_query_url": request.app.state.config.SEARXNG_QUERY_URL,
  319. "google_pse_api_key": request.app.state.config.GOOGLE_PSE_API_KEY,
  320. "google_pse_engine_id": request.app.state.config.GOOGLE_PSE_ENGINE_ID,
  321. "brave_search_api_key": request.app.state.config.BRAVE_SEARCH_API_KEY,
  322. "kagi_search_api_key": request.app.state.config.KAGI_SEARCH_API_KEY,
  323. "mojeek_search_api_key": request.app.state.config.MOJEEK_SEARCH_API_KEY,
  324. "serpstack_api_key": request.app.state.config.SERPSTACK_API_KEY,
  325. "serpstack_https": request.app.state.config.SERPSTACK_HTTPS,
  326. "serper_api_key": request.app.state.config.SERPER_API_KEY,
  327. "serply_api_key": request.app.state.config.SERPLY_API_KEY,
  328. "tavily_api_key": request.app.state.config.TAVILY_API_KEY,
  329. "searchapi_api_key": request.app.state.config.SEARCHAPI_API_KEY,
  330. "searchapi_engine": request.app.state.config.SEARCHAPI_ENGINE,
  331. "jina_api_key": request.app.state.config.JINA_API_KEY,
  332. "bing_search_v7_endpoint": request.app.state.config.BING_SEARCH_V7_ENDPOINT,
  333. "bing_search_v7_subscription_key": request.app.state.config.BING_SEARCH_V7_SUBSCRIPTION_KEY,
  334. "exa_api_key": request.app.state.config.EXA_API_KEY,
  335. "result_count": request.app.state.config.RAG_WEB_SEARCH_RESULT_COUNT,
  336. "concurrent_requests": request.app.state.config.RAG_WEB_SEARCH_CONCURRENT_REQUESTS,
  337. },
  338. },
  339. }
  340. class FileConfig(BaseModel):
  341. max_size: Optional[int] = None
  342. max_count: Optional[int] = None
  343. class DocumentIntelligenceConfigForm(BaseModel):
  344. endpoint: str
  345. key: str
  346. class ContentExtractionConfig(BaseModel):
  347. engine: str = ""
  348. tika_server_url: Optional[str] = None
  349. document_intelligence_config: Optional[DocumentIntelligenceConfigForm] = None
  350. class ChunkParamUpdateForm(BaseModel):
  351. text_splitter: Optional[str] = None
  352. chunk_size: int
  353. chunk_overlap: int
  354. class YoutubeLoaderConfig(BaseModel):
  355. language: list[str]
  356. translation: Optional[str] = None
  357. proxy_url: str = ""
  358. class WebSearchConfig(BaseModel):
  359. enabled: bool
  360. engine: Optional[str] = None
  361. searxng_query_url: Optional[str] = None
  362. google_pse_api_key: Optional[str] = None
  363. google_pse_engine_id: Optional[str] = None
  364. brave_search_api_key: Optional[str] = None
  365. kagi_search_api_key: Optional[str] = None
  366. mojeek_search_api_key: Optional[str] = None
  367. serpstack_api_key: Optional[str] = None
  368. serpstack_https: Optional[bool] = None
  369. serper_api_key: Optional[str] = None
  370. serply_api_key: Optional[str] = None
  371. tavily_api_key: Optional[str] = None
  372. searchapi_api_key: Optional[str] = None
  373. searchapi_engine: Optional[str] = None
  374. jina_api_key: Optional[str] = None
  375. bing_search_v7_endpoint: Optional[str] = None
  376. bing_search_v7_subscription_key: Optional[str] = None
  377. exa_api_key: Optional[str] = None
  378. result_count: Optional[int] = None
  379. concurrent_requests: Optional[int] = None
  380. class WebConfig(BaseModel):
  381. search: WebSearchConfig
  382. web_loader_ssl_verification: Optional[bool] = None
  383. class ConfigUpdateForm(BaseModel):
  384. pdf_extract_images: Optional[bool] = None
  385. enable_google_drive_integration: Optional[bool] = None
  386. file: Optional[FileConfig] = None
  387. content_extraction: Optional[ContentExtractionConfig] = None
  388. chunk: Optional[ChunkParamUpdateForm] = None
  389. youtube: Optional[YoutubeLoaderConfig] = None
  390. web: Optional[WebConfig] = None
  391. @router.post("/config/update")
  392. async def update_rag_config(
  393. request: Request, form_data: ConfigUpdateForm, user=Depends(get_admin_user)
  394. ):
  395. request.app.state.config.PDF_EXTRACT_IMAGES = (
  396. form_data.pdf_extract_images
  397. if form_data.pdf_extract_images is not None
  398. else request.app.state.config.PDF_EXTRACT_IMAGES
  399. )
  400. request.app.state.config.ENABLE_GOOGLE_DRIVE_INTEGRATION = (
  401. form_data.enable_google_drive_integration
  402. if form_data.enable_google_drive_integration is not None
  403. else request.app.state.config.ENABLE_GOOGLE_DRIVE_INTEGRATION
  404. )
  405. if form_data.file is not None:
  406. request.app.state.config.FILE_MAX_SIZE = form_data.file.max_size
  407. request.app.state.config.FILE_MAX_COUNT = form_data.file.max_count
  408. if form_data.content_extraction is not None:
  409. log.info(
  410. f"Updating content extraction: {request.app.state.config.CONTENT_EXTRACTION_ENGINE} to {form_data.content_extraction.engine}"
  411. )
  412. request.app.state.config.CONTENT_EXTRACTION_ENGINE = (
  413. form_data.content_extraction.engine
  414. )
  415. request.app.state.config.TIKA_SERVER_URL = (
  416. form_data.content_extraction.tika_server_url
  417. )
  418. if form_data.content_extraction.document_intelligence_config is not None:
  419. request.app.state.config.DOCUMENT_INTELLIGENCE_ENDPOINT = (
  420. form_data.content_extraction.document_intelligence_config.endpoint
  421. )
  422. request.app.state.config.DOCUMENT_INTELLIGENCE_KEY = (
  423. form_data.content_extraction.document_intelligence_config.key
  424. )
  425. if form_data.chunk is not None:
  426. request.app.state.config.TEXT_SPLITTER = form_data.chunk.text_splitter
  427. request.app.state.config.CHUNK_SIZE = form_data.chunk.chunk_size
  428. request.app.state.config.CHUNK_OVERLAP = form_data.chunk.chunk_overlap
  429. if form_data.youtube is not None:
  430. request.app.state.config.YOUTUBE_LOADER_LANGUAGE = form_data.youtube.language
  431. request.app.state.config.YOUTUBE_LOADER_PROXY_URL = form_data.youtube.proxy_url
  432. request.app.state.YOUTUBE_LOADER_TRANSLATION = form_data.youtube.translation
  433. if form_data.web is not None:
  434. request.app.state.config.ENABLE_RAG_WEB_LOADER_SSL_VERIFICATION = (
  435. # Note: When UI "Bypass SSL verification for Websites"=True then ENABLE_RAG_WEB_LOADER_SSL_VERIFICATION=False
  436. form_data.web.web_loader_ssl_verification
  437. )
  438. request.app.state.config.ENABLE_RAG_WEB_SEARCH = form_data.web.search.enabled
  439. request.app.state.config.RAG_WEB_SEARCH_ENGINE = form_data.web.search.engine
  440. request.app.state.config.SEARXNG_QUERY_URL = (
  441. form_data.web.search.searxng_query_url
  442. )
  443. request.app.state.config.GOOGLE_PSE_API_KEY = (
  444. form_data.web.search.google_pse_api_key
  445. )
  446. request.app.state.config.GOOGLE_PSE_ENGINE_ID = (
  447. form_data.web.search.google_pse_engine_id
  448. )
  449. request.app.state.config.BRAVE_SEARCH_API_KEY = (
  450. form_data.web.search.brave_search_api_key
  451. )
  452. request.app.state.config.KAGI_SEARCH_API_KEY = (
  453. form_data.web.search.kagi_search_api_key
  454. )
  455. request.app.state.config.MOJEEK_SEARCH_API_KEY = (
  456. form_data.web.search.mojeek_search_api_key
  457. )
  458. request.app.state.config.SERPSTACK_API_KEY = (
  459. form_data.web.search.serpstack_api_key
  460. )
  461. request.app.state.config.SERPSTACK_HTTPS = form_data.web.search.serpstack_https
  462. request.app.state.config.SERPER_API_KEY = form_data.web.search.serper_api_key
  463. request.app.state.config.SERPLY_API_KEY = form_data.web.search.serply_api_key
  464. request.app.state.config.TAVILY_API_KEY = form_data.web.search.tavily_api_key
  465. request.app.state.config.SEARCHAPI_API_KEY = (
  466. form_data.web.search.searchapi_api_key
  467. )
  468. request.app.state.config.SEARCHAPI_ENGINE = (
  469. form_data.web.search.searchapi_engine
  470. )
  471. request.app.state.config.JINA_API_KEY = form_data.web.search.jina_api_key
  472. request.app.state.config.BING_SEARCH_V7_ENDPOINT = (
  473. form_data.web.search.bing_search_v7_endpoint
  474. )
  475. request.app.state.config.BING_SEARCH_V7_SUBSCRIPTION_KEY = (
  476. form_data.web.search.bing_search_v7_subscription_key
  477. )
  478. request.app.state.config.EXA_API_KEY = form_data.web.search.exa_api_key
  479. request.app.state.config.RAG_WEB_SEARCH_RESULT_COUNT = (
  480. form_data.web.search.result_count
  481. )
  482. request.app.state.config.RAG_WEB_SEARCH_CONCURRENT_REQUESTS = (
  483. form_data.web.search.concurrent_requests
  484. )
  485. return {
  486. "status": True,
  487. "pdf_extract_images": request.app.state.config.PDF_EXTRACT_IMAGES,
  488. "file": {
  489. "max_size": request.app.state.config.FILE_MAX_SIZE,
  490. "max_count": request.app.state.config.FILE_MAX_COUNT,
  491. },
  492. "content_extraction": {
  493. "engine": request.app.state.config.CONTENT_EXTRACTION_ENGINE,
  494. "tika_server_url": request.app.state.config.TIKA_SERVER_URL,
  495. "document_intelligence_config": {
  496. "endpoint": request.app.state.config.DOCUMENT_INTELLIGENCE_ENDPOINT,
  497. "key": request.app.state.config.DOCUMENT_INTELLIGENCE_KEY,
  498. },
  499. },
  500. "chunk": {
  501. "text_splitter": request.app.state.config.TEXT_SPLITTER,
  502. "chunk_size": request.app.state.config.CHUNK_SIZE,
  503. "chunk_overlap": request.app.state.config.CHUNK_OVERLAP,
  504. },
  505. "youtube": {
  506. "language": request.app.state.config.YOUTUBE_LOADER_LANGUAGE,
  507. "proxy_url": request.app.state.config.YOUTUBE_LOADER_PROXY_URL,
  508. "translation": request.app.state.YOUTUBE_LOADER_TRANSLATION,
  509. },
  510. "web": {
  511. "web_loader_ssl_verification": request.app.state.config.ENABLE_RAG_WEB_LOADER_SSL_VERIFICATION,
  512. "search": {
  513. "enabled": request.app.state.config.ENABLE_RAG_WEB_SEARCH,
  514. "engine": request.app.state.config.RAG_WEB_SEARCH_ENGINE,
  515. "searxng_query_url": request.app.state.config.SEARXNG_QUERY_URL,
  516. "google_pse_api_key": request.app.state.config.GOOGLE_PSE_API_KEY,
  517. "google_pse_engine_id": request.app.state.config.GOOGLE_PSE_ENGINE_ID,
  518. "brave_search_api_key": request.app.state.config.BRAVE_SEARCH_API_KEY,
  519. "kagi_search_api_key": request.app.state.config.KAGI_SEARCH_API_KEY,
  520. "mojeek_search_api_key": request.app.state.config.MOJEEK_SEARCH_API_KEY,
  521. "serpstack_api_key": request.app.state.config.SERPSTACK_API_KEY,
  522. "serpstack_https": request.app.state.config.SERPSTACK_HTTPS,
  523. "serper_api_key": request.app.state.config.SERPER_API_KEY,
  524. "serply_api_key": request.app.state.config.SERPLY_API_KEY,
  525. "serachapi_api_key": request.app.state.config.SEARCHAPI_API_KEY,
  526. "searchapi_engine": request.app.state.config.SEARCHAPI_ENGINE,
  527. "tavily_api_key": request.app.state.config.TAVILY_API_KEY,
  528. "jina_api_key": request.app.state.config.JINA_API_KEY,
  529. "bing_search_v7_endpoint": request.app.state.config.BING_SEARCH_V7_ENDPOINT,
  530. "bing_search_v7_subscription_key": request.app.state.config.BING_SEARCH_V7_SUBSCRIPTION_KEY,
  531. "exa_api_key": request.app.state.config.EXA_API_KEY,
  532. "result_count": request.app.state.config.RAG_WEB_SEARCH_RESULT_COUNT,
  533. "concurrent_requests": request.app.state.config.RAG_WEB_SEARCH_CONCURRENT_REQUESTS,
  534. },
  535. },
  536. }
  537. @router.get("/template")
  538. async def get_rag_template(request: Request, user=Depends(get_verified_user)):
  539. return {
  540. "status": True,
  541. "template": request.app.state.config.RAG_TEMPLATE,
  542. }
  543. @router.get("/query/settings")
  544. async def get_query_settings(request: Request, user=Depends(get_admin_user)):
  545. return {
  546. "status": True,
  547. "template": request.app.state.config.RAG_TEMPLATE,
  548. "k": request.app.state.config.TOP_K,
  549. "r": request.app.state.config.RELEVANCE_THRESHOLD,
  550. "hybrid": request.app.state.config.ENABLE_RAG_HYBRID_SEARCH,
  551. }
  552. class QuerySettingsForm(BaseModel):
  553. k: Optional[int] = None
  554. r: Optional[float] = None
  555. template: Optional[str] = None
  556. hybrid: Optional[bool] = None
  557. @router.post("/query/settings/update")
  558. async def update_query_settings(
  559. request: Request, form_data: QuerySettingsForm, user=Depends(get_admin_user)
  560. ):
  561. request.app.state.config.RAG_TEMPLATE = form_data.template
  562. request.app.state.config.TOP_K = form_data.k if form_data.k else 4
  563. request.app.state.config.RELEVANCE_THRESHOLD = form_data.r if form_data.r else 0.0
  564. request.app.state.config.ENABLE_RAG_HYBRID_SEARCH = (
  565. form_data.hybrid if form_data.hybrid else False
  566. )
  567. return {
  568. "status": True,
  569. "template": request.app.state.config.RAG_TEMPLATE,
  570. "k": request.app.state.config.TOP_K,
  571. "r": request.app.state.config.RELEVANCE_THRESHOLD,
  572. "hybrid": request.app.state.config.ENABLE_RAG_HYBRID_SEARCH,
  573. }
  574. ####################################
  575. #
  576. # Document process and retrieval
  577. #
  578. ####################################
  579. def save_docs_to_vector_db(
  580. request: Request,
  581. docs,
  582. collection_name,
  583. metadata: Optional[dict] = None,
  584. overwrite: bool = False,
  585. split: bool = True,
  586. add: bool = False,
  587. user=None,
  588. ) -> bool:
  589. def _get_docs_info(docs: list[Document]) -> str:
  590. docs_info = set()
  591. # Trying to select relevant metadata identifying the document.
  592. for doc in docs:
  593. metadata = getattr(doc, "metadata", {})
  594. doc_name = metadata.get("name", "")
  595. if not doc_name:
  596. doc_name = metadata.get("title", "")
  597. if not doc_name:
  598. doc_name = metadata.get("source", "")
  599. if doc_name:
  600. docs_info.add(doc_name)
  601. return ", ".join(docs_info)
  602. log.info(
  603. f"save_docs_to_vector_db: document {_get_docs_info(docs)} {collection_name}"
  604. )
  605. # Check if entries with the same hash (metadata.hash) already exist
  606. if metadata and "hash" in metadata:
  607. result = VECTOR_DB_CLIENT.query(
  608. collection_name=collection_name,
  609. filter={"hash": metadata["hash"]},
  610. )
  611. if result is not None:
  612. existing_doc_ids = result.ids[0]
  613. if existing_doc_ids:
  614. log.info(f"Document with hash {metadata['hash']} already exists")
  615. raise ValueError(ERROR_MESSAGES.DUPLICATE_CONTENT)
  616. if split:
  617. if request.app.state.config.TEXT_SPLITTER in ["", "character"]:
  618. text_splitter = RecursiveCharacterTextSplitter(
  619. chunk_size=request.app.state.config.CHUNK_SIZE,
  620. chunk_overlap=request.app.state.config.CHUNK_OVERLAP,
  621. add_start_index=True,
  622. )
  623. elif request.app.state.config.TEXT_SPLITTER == "token":
  624. log.info(
  625. f"Using token text splitter: {request.app.state.config.TIKTOKEN_ENCODING_NAME}"
  626. )
  627. tiktoken.get_encoding(str(request.app.state.config.TIKTOKEN_ENCODING_NAME))
  628. text_splitter = TokenTextSplitter(
  629. encoding_name=str(request.app.state.config.TIKTOKEN_ENCODING_NAME),
  630. chunk_size=request.app.state.config.CHUNK_SIZE,
  631. chunk_overlap=request.app.state.config.CHUNK_OVERLAP,
  632. add_start_index=True,
  633. )
  634. else:
  635. raise ValueError(ERROR_MESSAGES.DEFAULT("Invalid text splitter"))
  636. docs = text_splitter.split_documents(docs)
  637. if len(docs) == 0:
  638. raise ValueError(ERROR_MESSAGES.EMPTY_CONTENT)
  639. texts = [doc.page_content for doc in docs]
  640. metadatas = [
  641. {
  642. **doc.metadata,
  643. **(metadata if metadata else {}),
  644. "embedding_config": json.dumps(
  645. {
  646. "engine": request.app.state.config.RAG_EMBEDDING_ENGINE,
  647. "model": request.app.state.config.RAG_EMBEDDING_MODEL,
  648. }
  649. ),
  650. }
  651. for doc in docs
  652. ]
  653. # ChromaDB does not like datetime formats
  654. # for meta-data so convert them to string.
  655. for metadata in metadatas:
  656. for key, value in metadata.items():
  657. if isinstance(value, datetime):
  658. metadata[key] = str(value)
  659. try:
  660. if VECTOR_DB_CLIENT.has_collection(collection_name=collection_name):
  661. log.info(f"collection {collection_name} already exists")
  662. if overwrite:
  663. VECTOR_DB_CLIENT.delete_collection(collection_name=collection_name)
  664. log.info(f"deleting existing collection {collection_name}")
  665. elif add is False:
  666. log.info(
  667. f"collection {collection_name} already exists, overwrite is False and add is False"
  668. )
  669. return True
  670. log.info(f"adding to collection {collection_name}")
  671. embedding_function = get_embedding_function(
  672. request.app.state.config.RAG_EMBEDDING_ENGINE,
  673. request.app.state.config.RAG_EMBEDDING_MODEL,
  674. request.app.state.ef,
  675. (
  676. request.app.state.config.RAG_OPENAI_API_BASE_URL
  677. if request.app.state.config.RAG_EMBEDDING_ENGINE == "openai"
  678. else request.app.state.config.RAG_OLLAMA_BASE_URL
  679. ),
  680. (
  681. request.app.state.config.RAG_OPENAI_API_KEY
  682. if request.app.state.config.RAG_EMBEDDING_ENGINE == "openai"
  683. else request.app.state.config.RAG_OLLAMA_API_KEY
  684. ),
  685. request.app.state.config.RAG_EMBEDDING_BATCH_SIZE,
  686. )
  687. embeddings = embedding_function(
  688. list(map(lambda x: x.replace("\n", " "), texts)), user=user
  689. )
  690. items = [
  691. {
  692. "id": str(uuid.uuid4()),
  693. "text": text,
  694. "vector": embeddings[idx],
  695. "metadata": metadatas[idx],
  696. }
  697. for idx, text in enumerate(texts)
  698. ]
  699. VECTOR_DB_CLIENT.insert(
  700. collection_name=collection_name,
  701. items=items,
  702. )
  703. return True
  704. except Exception as e:
  705. log.exception(e)
  706. raise e
  707. class ProcessFileForm(BaseModel):
  708. file_id: str
  709. content: Optional[str] = None
  710. collection_name: Optional[str] = None
  711. @router.post("/process/file")
  712. def process_file(
  713. request: Request,
  714. form_data: ProcessFileForm,
  715. user=Depends(get_verified_user),
  716. ):
  717. try:
  718. file = Files.get_file_by_id(form_data.file_id)
  719. collection_name = form_data.collection_name
  720. if collection_name is None:
  721. collection_name = f"file-{file.id}"
  722. if form_data.content:
  723. # Update the content in the file
  724. # Usage: /files/{file_id}/data/content/update
  725. VECTOR_DB_CLIENT.delete_collection(collection_name=f"file-{file.id}")
  726. docs = [
  727. Document(
  728. page_content=form_data.content.replace("<br/>", "\n"),
  729. metadata={
  730. **file.meta,
  731. "name": file.filename,
  732. "created_by": file.user_id,
  733. "file_id": file.id,
  734. "source": file.filename,
  735. },
  736. )
  737. ]
  738. text_content = form_data.content
  739. elif form_data.collection_name:
  740. # Check if the file has already been processed and save the content
  741. # Usage: /knowledge/{id}/file/add, /knowledge/{id}/file/update
  742. result = VECTOR_DB_CLIENT.query(
  743. collection_name=f"file-{file.id}", filter={"file_id": file.id}
  744. )
  745. if result is not None and len(result.ids[0]) > 0:
  746. docs = [
  747. Document(
  748. page_content=result.documents[0][idx],
  749. metadata=result.metadatas[0][idx],
  750. )
  751. for idx, id in enumerate(result.ids[0])
  752. ]
  753. else:
  754. docs = [
  755. Document(
  756. page_content=file.data.get("content", ""),
  757. metadata={
  758. **file.meta,
  759. "name": file.filename,
  760. "created_by": file.user_id,
  761. "file_id": file.id,
  762. "source": file.filename,
  763. },
  764. )
  765. ]
  766. text_content = file.data.get("content", "")
  767. else:
  768. # Process the file and save the content
  769. # Usage: /files/
  770. file_path = file.path
  771. if file_path:
  772. file_path = Storage.get_file(file_path)
  773. loader = Loader(
  774. engine=request.app.state.config.CONTENT_EXTRACTION_ENGINE,
  775. TIKA_SERVER_URL=request.app.state.config.TIKA_SERVER_URL,
  776. PDF_EXTRACT_IMAGES=request.app.state.config.PDF_EXTRACT_IMAGES,
  777. DOCUMENT_INTELLIGENCE_ENDPOINT=request.app.state.config.DOCUMENT_INTELLIGENCE_ENDPOINT,
  778. DOCUMENT_INTELLIGENCE_KEY=request.app.state.config.DOCUMENT_INTELLIGENCE_KEY,
  779. )
  780. docs = loader.load(
  781. file.filename, file.meta.get("content_type"), file_path
  782. )
  783. docs = [
  784. Document(
  785. page_content=doc.page_content,
  786. metadata={
  787. **doc.metadata,
  788. "name": file.filename,
  789. "created_by": file.user_id,
  790. "file_id": file.id,
  791. "source": file.filename,
  792. },
  793. )
  794. for doc in docs
  795. ]
  796. else:
  797. docs = [
  798. Document(
  799. page_content=file.data.get("content", ""),
  800. metadata={
  801. **file.meta,
  802. "name": file.filename,
  803. "created_by": file.user_id,
  804. "file_id": file.id,
  805. "source": file.filename,
  806. },
  807. )
  808. ]
  809. text_content = " ".join([doc.page_content for doc in docs])
  810. log.debug(f"text_content: {text_content}")
  811. Files.update_file_data_by_id(
  812. file.id,
  813. {"content": text_content},
  814. )
  815. hash = calculate_sha256_string(text_content)
  816. Files.update_file_hash_by_id(file.id, hash)
  817. try:
  818. result = save_docs_to_vector_db(
  819. request,
  820. docs=docs,
  821. collection_name=collection_name,
  822. metadata={
  823. "file_id": file.id,
  824. "name": file.filename,
  825. "hash": hash,
  826. },
  827. add=(True if form_data.collection_name else False),
  828. user=user,
  829. )
  830. if result:
  831. Files.update_file_metadata_by_id(
  832. file.id,
  833. {
  834. "collection_name": collection_name,
  835. },
  836. )
  837. return {
  838. "status": True,
  839. "collection_name": collection_name,
  840. "filename": file.filename,
  841. "content": text_content,
  842. }
  843. except Exception as e:
  844. raise e
  845. except Exception as e:
  846. log.exception(e)
  847. if "No pandoc was found" in str(e):
  848. raise HTTPException(
  849. status_code=status.HTTP_400_BAD_REQUEST,
  850. detail=ERROR_MESSAGES.PANDOC_NOT_INSTALLED,
  851. )
  852. else:
  853. raise HTTPException(
  854. status_code=status.HTTP_400_BAD_REQUEST,
  855. detail=str(e),
  856. )
  857. class ProcessTextForm(BaseModel):
  858. name: str
  859. content: str
  860. collection_name: Optional[str] = None
  861. @router.post("/process/text")
  862. def process_text(
  863. request: Request,
  864. form_data: ProcessTextForm,
  865. user=Depends(get_verified_user),
  866. ):
  867. collection_name = form_data.collection_name
  868. if collection_name is None:
  869. collection_name = calculate_sha256_string(form_data.content)
  870. docs = [
  871. Document(
  872. page_content=form_data.content,
  873. metadata={"name": form_data.name, "created_by": user.id},
  874. )
  875. ]
  876. text_content = form_data.content
  877. log.debug(f"text_content: {text_content}")
  878. result = save_docs_to_vector_db(request, docs, collection_name, user=user)
  879. if result:
  880. return {
  881. "status": True,
  882. "collection_name": collection_name,
  883. "content": text_content,
  884. }
  885. else:
  886. raise HTTPException(
  887. status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
  888. detail=ERROR_MESSAGES.DEFAULT(),
  889. )
  890. @router.post("/process/youtube")
  891. def process_youtube_video(
  892. request: Request, form_data: ProcessUrlForm, user=Depends(get_verified_user)
  893. ):
  894. try:
  895. collection_name = form_data.collection_name
  896. if not collection_name:
  897. collection_name = calculate_sha256_string(form_data.url)[:63]
  898. loader = YoutubeLoader(
  899. form_data.url,
  900. language=request.app.state.config.YOUTUBE_LOADER_LANGUAGE,
  901. proxy_url=request.app.state.config.YOUTUBE_LOADER_PROXY_URL,
  902. )
  903. docs = loader.load()
  904. content = " ".join([doc.page_content for doc in docs])
  905. log.debug(f"text_content: {content}")
  906. save_docs_to_vector_db(
  907. request, docs, collection_name, overwrite=True, user=user
  908. )
  909. return {
  910. "status": True,
  911. "collection_name": collection_name,
  912. "filename": form_data.url,
  913. "file": {
  914. "data": {
  915. "content": content,
  916. },
  917. "meta": {
  918. "name": form_data.url,
  919. },
  920. },
  921. }
  922. except Exception as e:
  923. log.exception(e)
  924. raise HTTPException(
  925. status_code=status.HTTP_400_BAD_REQUEST,
  926. detail=ERROR_MESSAGES.DEFAULT(e),
  927. )
  928. @router.post("/process/web")
  929. def process_web(
  930. request: Request, form_data: ProcessUrlForm, user=Depends(get_verified_user)
  931. ):
  932. try:
  933. collection_name = form_data.collection_name
  934. if not collection_name:
  935. collection_name = calculate_sha256_string(form_data.url)[:63]
  936. loader = get_web_loader(
  937. form_data.url,
  938. verify_ssl=request.app.state.config.ENABLE_RAG_WEB_LOADER_SSL_VERIFICATION,
  939. requests_per_second=request.app.state.config.RAG_WEB_SEARCH_CONCURRENT_REQUESTS,
  940. )
  941. docs = loader.load()
  942. content = " ".join([doc.page_content for doc in docs])
  943. log.debug(f"text_content: {content}")
  944. save_docs_to_vector_db(
  945. request, docs, collection_name, overwrite=True, user=user
  946. )
  947. return {
  948. "status": True,
  949. "collection_name": collection_name,
  950. "filename": form_data.url,
  951. "file": {
  952. "data": {
  953. "content": content,
  954. },
  955. "meta": {
  956. "name": form_data.url,
  957. },
  958. },
  959. }
  960. except Exception as e:
  961. log.exception(e)
  962. raise HTTPException(
  963. status_code=status.HTTP_400_BAD_REQUEST,
  964. detail=ERROR_MESSAGES.DEFAULT(e),
  965. )
  966. def search_web(request: Request, engine: str, query: str) -> list[SearchResult]:
  967. """Search the web using a search engine and return the results as a list of SearchResult objects.
  968. Will look for a search engine API key in environment variables in the following order:
  969. - SEARXNG_QUERY_URL
  970. - GOOGLE_PSE_API_KEY + GOOGLE_PSE_ENGINE_ID
  971. - BRAVE_SEARCH_API_KEY
  972. - KAGI_SEARCH_API_KEY
  973. - MOJEEK_SEARCH_API_KEY
  974. - SERPSTACK_API_KEY
  975. - SERPER_API_KEY
  976. - SERPLY_API_KEY
  977. - TAVILY_API_KEY
  978. - EXA_API_KEY
  979. - SEARCHAPI_API_KEY + SEARCHAPI_ENGINE (by default `google`)
  980. Args:
  981. query (str): The query to search for
  982. """
  983. # TODO: add playwright to search the web
  984. if engine == "searxng":
  985. if request.app.state.config.SEARXNG_QUERY_URL:
  986. return search_searxng(
  987. request.app.state.config.SEARXNG_QUERY_URL,
  988. query,
  989. request.app.state.config.RAG_WEB_SEARCH_RESULT_COUNT,
  990. request.app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST,
  991. )
  992. else:
  993. raise Exception("No SEARXNG_QUERY_URL found in environment variables")
  994. elif engine == "google_pse":
  995. if (
  996. request.app.state.config.GOOGLE_PSE_API_KEY
  997. and request.app.state.config.GOOGLE_PSE_ENGINE_ID
  998. ):
  999. return search_google_pse(
  1000. request.app.state.config.GOOGLE_PSE_API_KEY,
  1001. request.app.state.config.GOOGLE_PSE_ENGINE_ID,
  1002. query,
  1003. request.app.state.config.RAG_WEB_SEARCH_RESULT_COUNT,
  1004. request.app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST,
  1005. )
  1006. else:
  1007. raise Exception(
  1008. "No GOOGLE_PSE_API_KEY or GOOGLE_PSE_ENGINE_ID found in environment variables"
  1009. )
  1010. elif engine == "brave":
  1011. if request.app.state.config.BRAVE_SEARCH_API_KEY:
  1012. return search_brave(
  1013. request.app.state.config.BRAVE_SEARCH_API_KEY,
  1014. query,
  1015. request.app.state.config.RAG_WEB_SEARCH_RESULT_COUNT,
  1016. request.app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST,
  1017. )
  1018. else:
  1019. raise Exception("No BRAVE_SEARCH_API_KEY found in environment variables")
  1020. elif engine == "kagi":
  1021. if request.app.state.config.KAGI_SEARCH_API_KEY:
  1022. return search_kagi(
  1023. request.app.state.config.KAGI_SEARCH_API_KEY,
  1024. query,
  1025. request.app.state.config.RAG_WEB_SEARCH_RESULT_COUNT,
  1026. request.app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST,
  1027. )
  1028. else:
  1029. raise Exception("No KAGI_SEARCH_API_KEY found in environment variables")
  1030. elif engine == "mojeek":
  1031. if request.app.state.config.MOJEEK_SEARCH_API_KEY:
  1032. return search_mojeek(
  1033. request.app.state.config.MOJEEK_SEARCH_API_KEY,
  1034. query,
  1035. request.app.state.config.RAG_WEB_SEARCH_RESULT_COUNT,
  1036. request.app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST,
  1037. )
  1038. else:
  1039. raise Exception("No MOJEEK_SEARCH_API_KEY found in environment variables")
  1040. elif engine == "serpstack":
  1041. if request.app.state.config.SERPSTACK_API_KEY:
  1042. return search_serpstack(
  1043. request.app.state.config.SERPSTACK_API_KEY,
  1044. query,
  1045. request.app.state.config.RAG_WEB_SEARCH_RESULT_COUNT,
  1046. request.app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST,
  1047. https_enabled=request.app.state.config.SERPSTACK_HTTPS,
  1048. )
  1049. else:
  1050. raise Exception("No SERPSTACK_API_KEY found in environment variables")
  1051. elif engine == "serper":
  1052. if request.app.state.config.SERPER_API_KEY:
  1053. return search_serper(
  1054. request.app.state.config.SERPER_API_KEY,
  1055. query,
  1056. request.app.state.config.RAG_WEB_SEARCH_RESULT_COUNT,
  1057. request.app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST,
  1058. )
  1059. else:
  1060. raise Exception("No SERPER_API_KEY found in environment variables")
  1061. elif engine == "serply":
  1062. if request.app.state.config.SERPLY_API_KEY:
  1063. return search_serply(
  1064. request.app.state.config.SERPLY_API_KEY,
  1065. query,
  1066. request.app.state.config.RAG_WEB_SEARCH_RESULT_COUNT,
  1067. request.app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST,
  1068. )
  1069. else:
  1070. raise Exception("No SERPLY_API_KEY found in environment variables")
  1071. elif engine == "duckduckgo":
  1072. return search_duckduckgo(
  1073. query,
  1074. request.app.state.config.RAG_WEB_SEARCH_RESULT_COUNT,
  1075. request.app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST,
  1076. )
  1077. elif engine == "tavily":
  1078. if request.app.state.config.TAVILY_API_KEY:
  1079. return search_tavily(
  1080. request.app.state.config.TAVILY_API_KEY,
  1081. query,
  1082. request.app.state.config.RAG_WEB_SEARCH_RESULT_COUNT,
  1083. )
  1084. else:
  1085. raise Exception("No TAVILY_API_KEY found in environment variables")
  1086. elif engine == "searchapi":
  1087. if request.app.state.config.SEARCHAPI_API_KEY:
  1088. return search_searchapi(
  1089. request.app.state.config.SEARCHAPI_API_KEY,
  1090. request.app.state.config.SEARCHAPI_ENGINE,
  1091. query,
  1092. request.app.state.config.RAG_WEB_SEARCH_RESULT_COUNT,
  1093. request.app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST,
  1094. )
  1095. else:
  1096. raise Exception("No SEARCHAPI_API_KEY found in environment variables")
  1097. elif engine == "jina":
  1098. return search_jina(
  1099. request.app.state.config.JINA_API_KEY,
  1100. query,
  1101. request.app.state.config.RAG_WEB_SEARCH_RESULT_COUNT,
  1102. )
  1103. elif engine == "bing":
  1104. return search_bing(
  1105. request.app.state.config.BING_SEARCH_V7_SUBSCRIPTION_KEY,
  1106. request.app.state.config.BING_SEARCH_V7_ENDPOINT,
  1107. str(DEFAULT_LOCALE),
  1108. query,
  1109. request.app.state.config.RAG_WEB_SEARCH_RESULT_COUNT,
  1110. request.app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST,
  1111. )
  1112. elif engine == "exa":
  1113. return search_exa(
  1114. request.app.state.config.EXA_API_KEY,
  1115. query,
  1116. request.app.state.config.RAG_WEB_SEARCH_RESULT_COUNT,
  1117. request.app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST,
  1118. )
  1119. else:
  1120. raise Exception("No search engine API key found in environment variables")
  1121. @router.post("/process/web/search")
  1122. def process_web_search(
  1123. request: Request, form_data: SearchForm, user=Depends(get_verified_user)
  1124. ):
  1125. try:
  1126. logging.info(
  1127. f"trying to web search with {request.app.state.config.RAG_WEB_SEARCH_ENGINE, form_data.query}"
  1128. )
  1129. web_results = search_web(
  1130. request, request.app.state.config.RAG_WEB_SEARCH_ENGINE, form_data.query
  1131. )
  1132. except Exception as e:
  1133. log.exception(e)
  1134. raise HTTPException(
  1135. status_code=status.HTTP_400_BAD_REQUEST,
  1136. detail=ERROR_MESSAGES.WEB_SEARCH_ERROR(e),
  1137. )
  1138. log.debug(f"web_results: {web_results}")
  1139. try:
  1140. collection_name = form_data.collection_name
  1141. if collection_name == "" or collection_name is None:
  1142. collection_name = f"web-search-{calculate_sha256_string(form_data.query)}"[
  1143. :63
  1144. ]
  1145. urls = [result.link for result in web_results]
  1146. loader = get_web_loader(
  1147. urls,
  1148. verify_ssl=request.app.state.config.ENABLE_RAG_WEB_LOADER_SSL_VERIFICATION,
  1149. requests_per_second=request.app.state.config.RAG_WEB_SEARCH_CONCURRENT_REQUESTS,
  1150. )
  1151. docs = loader.load()
  1152. save_docs_to_vector_db(
  1153. request, docs, collection_name, overwrite=True, user=user
  1154. )
  1155. return {
  1156. "status": True,
  1157. "collection_name": collection_name,
  1158. "filenames": urls,
  1159. }
  1160. except Exception as e:
  1161. log.exception(e)
  1162. raise HTTPException(
  1163. status_code=status.HTTP_400_BAD_REQUEST,
  1164. detail=ERROR_MESSAGES.DEFAULT(e),
  1165. )
  1166. class QueryDocForm(BaseModel):
  1167. collection_name: str
  1168. query: str
  1169. k: Optional[int] = None
  1170. r: Optional[float] = None
  1171. hybrid: Optional[bool] = None
  1172. @router.post("/query/doc")
  1173. def query_doc_handler(
  1174. request: Request,
  1175. form_data: QueryDocForm,
  1176. user=Depends(get_verified_user),
  1177. ):
  1178. try:
  1179. if request.app.state.config.ENABLE_RAG_HYBRID_SEARCH:
  1180. return query_doc_with_hybrid_search(
  1181. collection_name=form_data.collection_name,
  1182. query=form_data.query,
  1183. embedding_function=lambda query: request.app.state.EMBEDDING_FUNCTION(
  1184. query, user=user
  1185. ),
  1186. k=form_data.k if form_data.k else request.app.state.config.TOP_K,
  1187. reranking_function=request.app.state.rf,
  1188. r=(
  1189. form_data.r
  1190. if form_data.r
  1191. else request.app.state.config.RELEVANCE_THRESHOLD
  1192. ),
  1193. user=user,
  1194. )
  1195. else:
  1196. return query_doc(
  1197. collection_name=form_data.collection_name,
  1198. query_embedding=request.app.state.EMBEDDING_FUNCTION(
  1199. form_data.query, user=user
  1200. ),
  1201. k=form_data.k if form_data.k else request.app.state.config.TOP_K,
  1202. user=user,
  1203. )
  1204. except Exception as e:
  1205. log.exception(e)
  1206. raise HTTPException(
  1207. status_code=status.HTTP_400_BAD_REQUEST,
  1208. detail=ERROR_MESSAGES.DEFAULT(e),
  1209. )
  1210. class QueryCollectionsForm(BaseModel):
  1211. collection_names: list[str]
  1212. query: str
  1213. k: Optional[int] = None
  1214. r: Optional[float] = None
  1215. hybrid: Optional[bool] = None
  1216. @router.post("/query/collection")
  1217. def query_collection_handler(
  1218. request: Request,
  1219. form_data: QueryCollectionsForm,
  1220. user=Depends(get_verified_user),
  1221. ):
  1222. try:
  1223. if request.app.state.config.ENABLE_RAG_HYBRID_SEARCH:
  1224. return query_collection_with_hybrid_search(
  1225. collection_names=form_data.collection_names,
  1226. queries=[form_data.query],
  1227. embedding_function=lambda query: request.app.state.EMBEDDING_FUNCTION(
  1228. query, user=user
  1229. ),
  1230. k=form_data.k if form_data.k else request.app.state.config.TOP_K,
  1231. reranking_function=request.app.state.rf,
  1232. r=(
  1233. form_data.r
  1234. if form_data.r
  1235. else request.app.state.config.RELEVANCE_THRESHOLD
  1236. ),
  1237. )
  1238. else:
  1239. return query_collection(
  1240. collection_names=form_data.collection_names,
  1241. queries=[form_data.query],
  1242. embedding_function=lambda query: request.app.state.EMBEDDING_FUNCTION(
  1243. query, user=user
  1244. ),
  1245. k=form_data.k if form_data.k else request.app.state.config.TOP_K,
  1246. )
  1247. except Exception as e:
  1248. log.exception(e)
  1249. raise HTTPException(
  1250. status_code=status.HTTP_400_BAD_REQUEST,
  1251. detail=ERROR_MESSAGES.DEFAULT(e),
  1252. )
  1253. ####################################
  1254. #
  1255. # Vector DB operations
  1256. #
  1257. ####################################
  1258. class DeleteForm(BaseModel):
  1259. collection_name: str
  1260. file_id: str
  1261. @router.post("/delete")
  1262. def delete_entries_from_collection(form_data: DeleteForm, user=Depends(get_admin_user)):
  1263. try:
  1264. if VECTOR_DB_CLIENT.has_collection(collection_name=form_data.collection_name):
  1265. file = Files.get_file_by_id(form_data.file_id)
  1266. hash = file.hash
  1267. VECTOR_DB_CLIENT.delete(
  1268. collection_name=form_data.collection_name,
  1269. metadata={"hash": hash},
  1270. )
  1271. return {"status": True}
  1272. else:
  1273. return {"status": False}
  1274. except Exception as e:
  1275. log.exception(e)
  1276. return {"status": False}
  1277. @router.post("/reset/db")
  1278. def reset_vector_db(user=Depends(get_admin_user)):
  1279. VECTOR_DB_CLIENT.reset()
  1280. Knowledges.delete_all_knowledge()
  1281. @router.post("/reset/uploads")
  1282. def reset_upload_dir(user=Depends(get_admin_user)) -> bool:
  1283. folder = f"{UPLOAD_DIR}"
  1284. try:
  1285. # Check if the directory exists
  1286. if os.path.exists(folder):
  1287. # Iterate over all the files and directories in the specified directory
  1288. for filename in os.listdir(folder):
  1289. file_path = os.path.join(folder, filename)
  1290. try:
  1291. if os.path.isfile(file_path) or os.path.islink(file_path):
  1292. os.unlink(file_path) # Remove the file or link
  1293. elif os.path.isdir(file_path):
  1294. shutil.rmtree(file_path) # Remove the directory
  1295. except Exception as e:
  1296. print(f"Failed to delete {file_path}. Reason: {e}")
  1297. else:
  1298. print(f"The directory {folder} does not exist")
  1299. except Exception as e:
  1300. print(f"Failed to process the directory {folder}. Reason: {e}")
  1301. return True
  1302. if ENV == "dev":
  1303. @router.get("/ef/{text}")
  1304. async def get_embeddings(request: Request, text: Optional[str] = "Hello World!"):
  1305. return {"result": request.app.state.EMBEDDING_FUNCTION(text)}
  1306. class BatchProcessFilesForm(BaseModel):
  1307. files: List[FileModel]
  1308. collection_name: str
  1309. class BatchProcessFilesResult(BaseModel):
  1310. file_id: str
  1311. status: str
  1312. error: Optional[str] = None
  1313. class BatchProcessFilesResponse(BaseModel):
  1314. results: List[BatchProcessFilesResult]
  1315. errors: List[BatchProcessFilesResult]
  1316. @router.post("/process/files/batch")
  1317. def process_files_batch(
  1318. request: Request,
  1319. form_data: BatchProcessFilesForm,
  1320. user=Depends(get_verified_user),
  1321. ) -> BatchProcessFilesResponse:
  1322. """
  1323. Process a batch of files and save them to the vector database.
  1324. """
  1325. results: List[BatchProcessFilesResult] = []
  1326. errors: List[BatchProcessFilesResult] = []
  1327. collection_name = form_data.collection_name
  1328. # Prepare all documents first
  1329. all_docs: List[Document] = []
  1330. for file in form_data.files:
  1331. try:
  1332. text_content = file.data.get("content", "")
  1333. docs: List[Document] = [
  1334. Document(
  1335. page_content=text_content.replace("<br/>", "\n"),
  1336. metadata={
  1337. **file.meta,
  1338. "name": file.filename,
  1339. "created_by": file.user_id,
  1340. "file_id": file.id,
  1341. "source": file.filename,
  1342. },
  1343. )
  1344. ]
  1345. hash = calculate_sha256_string(text_content)
  1346. Files.update_file_hash_by_id(file.id, hash)
  1347. Files.update_file_data_by_id(file.id, {"content": text_content})
  1348. all_docs.extend(docs)
  1349. results.append(BatchProcessFilesResult(file_id=file.id, status="prepared"))
  1350. except Exception as e:
  1351. log.error(f"process_files_batch: Error processing file {file.id}: {str(e)}")
  1352. errors.append(
  1353. BatchProcessFilesResult(file_id=file.id, status="failed", error=str(e))
  1354. )
  1355. # Save all documents in one batch
  1356. if all_docs:
  1357. try:
  1358. save_docs_to_vector_db(
  1359. request=request,
  1360. docs=all_docs,
  1361. collection_name=collection_name,
  1362. add=True,
  1363. user=user,
  1364. )
  1365. # Update all files with collection name
  1366. for result in results:
  1367. Files.update_file_metadata_by_id(
  1368. result.file_id, {"collection_name": collection_name}
  1369. )
  1370. result.status = "completed"
  1371. except Exception as e:
  1372. log.error(
  1373. f"process_files_batch: Error saving documents to vector DB: {str(e)}"
  1374. )
  1375. for result in results:
  1376. result.status = "failed"
  1377. errors.append(
  1378. BatchProcessFilesResult(file_id=result.file_id, error=str(e))
  1379. )
  1380. return BatchProcessFilesResponse(results=results, errors=errors)