utils.py 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491
  1. import logging
  2. import os
  3. from typing import Optional, Union
  4. import requests
  5. from huggingface_hub import snapshot_download
  6. from langchain.retrievers import ContextualCompressionRetriever, EnsembleRetriever
  7. from langchain_community.retrievers import BM25Retriever
  8. from langchain_core.documents import Document
  9. from open_webui.apps.ollama.main import (
  10. GenerateEmbeddingsForm,
  11. generate_ollama_embeddings,
  12. )
  13. from open_webui.apps.rag.vector.connector import VECTOR_DB_CLIENT
  14. from open_webui.utils.misc import get_last_user_message
  15. from open_webui.env import SRC_LOG_LEVELS
  16. log = logging.getLogger(__name__)
  17. log.setLevel(SRC_LOG_LEVELS["RAG"])
  18. def query_doc(
  19. collection_name: str,
  20. query: str,
  21. embedding_function,
  22. k: int,
  23. ):
  24. try:
  25. result = VECTOR_DB_CLIENT.query_collection(
  26. name=collection_name,
  27. query_embeddings=embedding_function(query),
  28. k=k,
  29. )
  30. log.info(f"query_doc:result {result}")
  31. return result
  32. except Exception as e:
  33. raise e
  34. def query_doc_with_hybrid_search(
  35. collection_name: str,
  36. query: str,
  37. embedding_function,
  38. k: int,
  39. reranking_function,
  40. r: float,
  41. ):
  42. try:
  43. collection = VECTOR_DB_CLIENT.get_collection(name=collection_name)
  44. documents = collection.get() # get all documents
  45. bm25_retriever = BM25Retriever.from_texts(
  46. texts=documents.get("documents"),
  47. metadatas=documents.get("metadatas"),
  48. )
  49. bm25_retriever.k = k
  50. chroma_retriever = ChromaRetriever(
  51. collection=collection,
  52. embedding_function=embedding_function,
  53. top_n=k,
  54. )
  55. ensemble_retriever = EnsembleRetriever(
  56. retrievers=[bm25_retriever, chroma_retriever], weights=[0.5, 0.5]
  57. )
  58. compressor = RerankCompressor(
  59. embedding_function=embedding_function,
  60. top_n=k,
  61. reranking_function=reranking_function,
  62. r_score=r,
  63. )
  64. compression_retriever = ContextualCompressionRetriever(
  65. base_compressor=compressor, base_retriever=ensemble_retriever
  66. )
  67. result = compression_retriever.invoke(query)
  68. result = {
  69. "distances": [[d.metadata.get("score") for d in result]],
  70. "documents": [[d.page_content for d in result]],
  71. "metadatas": [[d.metadata for d in result]],
  72. }
  73. log.info(f"query_doc_with_hybrid_search:result {result}")
  74. return result
  75. except Exception as e:
  76. raise e
  77. def merge_and_sort_query_results(query_results, k, reverse=False):
  78. # Initialize lists to store combined data
  79. combined_distances = []
  80. combined_documents = []
  81. combined_metadatas = []
  82. for data in query_results:
  83. combined_distances.extend(data["distances"][0])
  84. combined_documents.extend(data["documents"][0])
  85. combined_metadatas.extend(data["metadatas"][0])
  86. # Create a list of tuples (distance, document, metadata)
  87. combined = list(zip(combined_distances, combined_documents, combined_metadatas))
  88. # Sort the list based on distances
  89. combined.sort(key=lambda x: x[0], reverse=reverse)
  90. # We don't have anything :-(
  91. if not combined:
  92. sorted_distances = []
  93. sorted_documents = []
  94. sorted_metadatas = []
  95. else:
  96. # Unzip the sorted list
  97. sorted_distances, sorted_documents, sorted_metadatas = zip(*combined)
  98. # Slicing the lists to include only k elements
  99. sorted_distances = list(sorted_distances)[:k]
  100. sorted_documents = list(sorted_documents)[:k]
  101. sorted_metadatas = list(sorted_metadatas)[:k]
  102. # Create the output dictionary
  103. result = {
  104. "distances": [sorted_distances],
  105. "documents": [sorted_documents],
  106. "metadatas": [sorted_metadatas],
  107. }
  108. return result
  109. def query_collection(
  110. collection_names: list[str],
  111. query: str,
  112. embedding_function,
  113. k: int,
  114. ):
  115. results = []
  116. for collection_name in collection_names:
  117. if collection_name:
  118. try:
  119. result = query_doc(
  120. collection_name=collection_name,
  121. query=query,
  122. k=k,
  123. embedding_function=embedding_function,
  124. )
  125. results.append(result)
  126. except Exception:
  127. pass
  128. else:
  129. pass
  130. return merge_and_sort_query_results(results, k=k)
  131. def query_collection_with_hybrid_search(
  132. collection_names: list[str],
  133. query: str,
  134. embedding_function,
  135. k: int,
  136. reranking_function,
  137. r: float,
  138. ):
  139. results = []
  140. for collection_name in collection_names:
  141. try:
  142. result = query_doc_with_hybrid_search(
  143. collection_name=collection_name,
  144. query=query,
  145. embedding_function=embedding_function,
  146. k=k,
  147. reranking_function=reranking_function,
  148. r=r,
  149. )
  150. results.append(result)
  151. except Exception:
  152. pass
  153. return merge_and_sort_query_results(results, k=k, reverse=True)
  154. def rag_template(template: str, context: str, query: str):
  155. template = template.replace("[context]", context)
  156. template = template.replace("[query]", query)
  157. return template
  158. def get_embedding_function(
  159. embedding_engine,
  160. embedding_model,
  161. embedding_function,
  162. openai_key,
  163. openai_url,
  164. batch_size,
  165. ):
  166. if embedding_engine == "":
  167. return lambda query: embedding_function.encode(query).tolist()
  168. elif embedding_engine in ["ollama", "openai"]:
  169. if embedding_engine == "ollama":
  170. func = lambda query: generate_ollama_embeddings(
  171. GenerateEmbeddingsForm(
  172. **{
  173. "model": embedding_model,
  174. "prompt": query,
  175. }
  176. )
  177. )
  178. elif embedding_engine == "openai":
  179. func = lambda query: generate_openai_embeddings(
  180. model=embedding_model,
  181. text=query,
  182. key=openai_key,
  183. url=openai_url,
  184. )
  185. def generate_multiple(query, f):
  186. if isinstance(query, list):
  187. if embedding_engine == "openai":
  188. embeddings = []
  189. for i in range(0, len(query), batch_size):
  190. embeddings.extend(f(query[i : i + batch_size]))
  191. return embeddings
  192. else:
  193. return [f(q) for q in query]
  194. else:
  195. return f(query)
  196. return lambda query: generate_multiple(query, func)
  197. def get_rag_context(
  198. files,
  199. messages,
  200. embedding_function,
  201. k,
  202. reranking_function,
  203. r,
  204. hybrid_search,
  205. ):
  206. log.debug(f"files: {files} {messages} {embedding_function} {reranking_function}")
  207. query = get_last_user_message(messages)
  208. extracted_collections = []
  209. relevant_contexts = []
  210. for file in files:
  211. context = None
  212. collection_names = (
  213. file["collection_names"]
  214. if file["type"] == "collection"
  215. else [file["collection_name"]] if file["collection_name"] else []
  216. )
  217. collection_names = set(collection_names).difference(extracted_collections)
  218. if not collection_names:
  219. log.debug(f"skipping {file} as it has already been extracted")
  220. continue
  221. try:
  222. if file["type"] == "text":
  223. context = file["content"]
  224. else:
  225. if hybrid_search:
  226. context = query_collection_with_hybrid_search(
  227. collection_names=collection_names,
  228. query=query,
  229. embedding_function=embedding_function,
  230. k=k,
  231. reranking_function=reranking_function,
  232. r=r,
  233. )
  234. else:
  235. context = query_collection(
  236. collection_names=collection_names,
  237. query=query,
  238. embedding_function=embedding_function,
  239. k=k,
  240. )
  241. except Exception as e:
  242. log.exception(e)
  243. context = None
  244. if context:
  245. relevant_contexts.append({**context, "source": file})
  246. extracted_collections.extend(collection_names)
  247. contexts = []
  248. citations = []
  249. for context in relevant_contexts:
  250. try:
  251. if "documents" in context:
  252. contexts.append(
  253. "\n\n".join(
  254. [text for text in context["documents"][0] if text is not None]
  255. )
  256. )
  257. if "metadatas" in context:
  258. citations.append(
  259. {
  260. "source": context["source"],
  261. "document": context["documents"][0],
  262. "metadata": context["metadatas"][0],
  263. }
  264. )
  265. except Exception as e:
  266. log.exception(e)
  267. return contexts, citations
  268. def get_model_path(model: str, update_model: bool = False):
  269. # Construct huggingface_hub kwargs with local_files_only to return the snapshot path
  270. cache_dir = os.getenv("SENTENCE_TRANSFORMERS_HOME")
  271. local_files_only = not update_model
  272. snapshot_kwargs = {
  273. "cache_dir": cache_dir,
  274. "local_files_only": local_files_only,
  275. }
  276. log.debug(f"model: {model}")
  277. log.debug(f"snapshot_kwargs: {snapshot_kwargs}")
  278. # Inspiration from upstream sentence_transformers
  279. if (
  280. os.path.exists(model)
  281. or ("\\" in model or model.count("/") > 1)
  282. and local_files_only
  283. ):
  284. # If fully qualified path exists, return input, else set repo_id
  285. return model
  286. elif "/" not in model:
  287. # Set valid repo_id for model short-name
  288. model = "sentence-transformers" + "/" + model
  289. snapshot_kwargs["repo_id"] = model
  290. # Attempt to query the huggingface_hub library to determine the local path and/or to update
  291. try:
  292. model_repo_path = snapshot_download(**snapshot_kwargs)
  293. log.debug(f"model_repo_path: {model_repo_path}")
  294. return model_repo_path
  295. except Exception as e:
  296. log.exception(f"Cannot determine model snapshot path: {e}")
  297. return model
  298. def generate_openai_embeddings(
  299. model: str,
  300. text: Union[str, list[str]],
  301. key: str,
  302. url: str = "https://api.openai.com/v1",
  303. ):
  304. if isinstance(text, list):
  305. embeddings = generate_openai_batch_embeddings(model, text, key, url)
  306. else:
  307. embeddings = generate_openai_batch_embeddings(model, [text], key, url)
  308. return embeddings[0] if isinstance(text, str) else embeddings
  309. def generate_openai_batch_embeddings(
  310. model: str, texts: list[str], key: str, url: str = "https://api.openai.com/v1"
  311. ) -> Optional[list[list[float]]]:
  312. try:
  313. r = requests.post(
  314. f"{url}/embeddings",
  315. headers={
  316. "Content-Type": "application/json",
  317. "Authorization": f"Bearer {key}",
  318. },
  319. json={"input": texts, "model": model},
  320. )
  321. r.raise_for_status()
  322. data = r.json()
  323. if "data" in data:
  324. return [elem["embedding"] for elem in data["data"]]
  325. else:
  326. raise "Something went wrong :/"
  327. except Exception as e:
  328. print(e)
  329. return None
  330. from typing import Any
  331. from langchain_core.callbacks import CallbackManagerForRetrieverRun
  332. from langchain_core.retrievers import BaseRetriever
  333. class ChromaRetriever(BaseRetriever):
  334. collection: Any
  335. embedding_function: Any
  336. top_n: int
  337. def _get_relevant_documents(
  338. self,
  339. query: str,
  340. *,
  341. run_manager: CallbackManagerForRetrieverRun,
  342. ) -> list[Document]:
  343. query_embeddings = self.embedding_function(query)
  344. results = self.collection.query(
  345. query_embeddings=[query_embeddings],
  346. n_results=self.top_n,
  347. )
  348. ids = results["ids"][0]
  349. metadatas = results["metadatas"][0]
  350. documents = results["documents"][0]
  351. results = []
  352. for idx in range(len(ids)):
  353. results.append(
  354. Document(
  355. metadata=metadatas[idx],
  356. page_content=documents[idx],
  357. )
  358. )
  359. return results
  360. import operator
  361. from typing import Optional, Sequence
  362. from langchain_core.callbacks import Callbacks
  363. from langchain_core.documents import BaseDocumentCompressor, Document
  364. from langchain_core.pydantic_v1 import Extra
  365. class RerankCompressor(BaseDocumentCompressor):
  366. embedding_function: Any
  367. top_n: int
  368. reranking_function: Any
  369. r_score: float
  370. class Config:
  371. extra = Extra.forbid
  372. arbitrary_types_allowed = True
  373. def compress_documents(
  374. self,
  375. documents: Sequence[Document],
  376. query: str,
  377. callbacks: Optional[Callbacks] = None,
  378. ) -> Sequence[Document]:
  379. reranking = self.reranking_function is not None
  380. if reranking:
  381. scores = self.reranking_function.predict(
  382. [(query, doc.page_content) for doc in documents]
  383. )
  384. else:
  385. from sentence_transformers import util
  386. query_embedding = self.embedding_function(query)
  387. document_embedding = self.embedding_function(
  388. [doc.page_content for doc in documents]
  389. )
  390. scores = util.cos_sim(query_embedding, document_embedding)[0]
  391. docs_with_scores = list(zip(documents, scores.tolist()))
  392. if self.r_score:
  393. docs_with_scores = [
  394. (d, s) for d, s in docs_with_scores if s >= self.r_score
  395. ]
  396. result = sorted(docs_with_scores, key=operator.itemgetter(1), reverse=True)
  397. final_results = []
  398. for doc, doc_score in result[: self.top_n]:
  399. metadata = doc.metadata
  400. metadata["score"] = doc_score
  401. doc = Document(
  402. page_content=doc.page_content,
  403. metadata=metadata,
  404. )
  405. final_results.append(doc)
  406. return final_results