123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134 |
- from open_webui.utils.task import prompt_template
- from open_webui.utils.misc import (
- add_or_update_system_message,
- )
- from typing import Callable, Optional
- # inplace function: form_data is modified
- def apply_model_system_prompt_to_body(params: dict, form_data: dict, user) -> dict:
- system = params.get("system", None)
- if not system:
- return form_data
- if user:
- template_params = {
- "user_name": user.name,
- "user_location": user.info.get("location") if user.info else None,
- }
- else:
- template_params = {}
- system = prompt_template(system, **template_params)
- form_data["messages"] = add_or_update_system_message(
- system, form_data.get("messages", [])
- )
- return form_data
- # inplace function: form_data is modified
- def apply_model_params_to_body(
- params: dict, form_data: dict, mappings: dict[str, Callable]
- ) -> dict:
- if not params:
- return form_data
- for key, cast_func in mappings.items():
- if (value := params.get(key)) is not None:
- form_data[key] = cast_func(value)
- return form_data
- # inplace function: form_data is modified
- def apply_model_params_to_body_openai(params: dict, form_data: dict) -> dict:
- mappings = {
- "temperature": float,
- "top_p": float,
- "max_tokens": int,
- "frequency_penalty": float,
- "seed": lambda x: x,
- "stop": lambda x: [bytes(s, "utf-8").decode("unicode_escape") for s in x],
- }
- return apply_model_params_to_body(params, form_data, mappings)
- def apply_model_params_to_body_ollama(params: dict, form_data: dict) -> dict:
- opts = [
- "temperature",
- "top_p",
- "seed",
- "mirostat",
- "mirostat_eta",
- "mirostat_tau",
- "num_ctx",
- "num_batch",
- "num_keep",
- "repeat_last_n",
- "tfs_z",
- "top_k",
- "min_p",
- "use_mmap",
- "use_mlock",
- "num_thread",
- "num_gpu",
- ]
- mappings = {i: lambda x: x for i in opts}
- form_data = apply_model_params_to_body(params, form_data, mappings)
- name_differences = {
- "max_tokens": "num_predict",
- "frequency_penalty": "repeat_penalty",
- }
- for key, value in name_differences.items():
- if (param := params.get(key, None)) is not None:
- form_data[value] = param
- return form_data
- def convert_payload_openai_to_ollama(openai_payload: dict) -> dict:
- """
- Converts a payload formatted for OpenAI's API to be compatible with Ollama's API endpoint for chat completions.
- Args:
- openai_payload (dict): The payload originally designed for OpenAI API usage.
- Returns:
- dict: A modified payload compatible with the Ollama API.
- """
- ollama_payload = {}
- # Mapping basic model and message details
- ollama_payload["model"] = openai_payload.get("model")
- ollama_payload["messages"] = openai_payload.get("messages")
- ollama_payload["stream"] = openai_payload.get("stream", False)
- # If there are advanced parameters in the payload, format them in Ollama's options field
- ollama_options = {}
- # Handle parameters which map directly
- for param in ["temperature", "top_p", "seed"]:
- if param in openai_payload:
- ollama_options[param] = openai_payload[param]
- # Mapping OpenAI's `max_tokens` -> Ollama's `num_predict`
- if "max_completion_tokens" in openai_payload:
- ollama_options["num_predict"] = openai_payload["max_completion_tokens"]
- elif "max_tokens" in openai_payload:
- ollama_options["num_predict"] = openai_payload["max_tokens"]
- # Handle frequency / presence_penalty, which needs renaming and checking
- if "frequency_penalty" in openai_payload:
- ollama_options["repeat_penalty"] = openai_payload["frequency_penalty"]
- if "presence_penalty" in openai_payload and "penalty" not in ollama_options:
- # We are assuming presence penalty uses a similar concept in Ollama, which needs custom handling if exists.
- ollama_options["new_topic_penalty"] = openai_payload["presence_penalty"]
- # Add options to payload if any have been set
- if ollama_options:
- ollama_payload["options"] = ollama_options
- return ollama_payload
|