utils.py 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493
  1. import os
  2. import logging
  3. import requests
  4. from typing import List, Union
  5. from apps.ollama.main import (
  6. generate_ollama_embeddings,
  7. GenerateEmbeddingsForm,
  8. )
  9. from huggingface_hub import snapshot_download
  10. from langchain_core.documents import Document
  11. from langchain_community.retrievers import BM25Retriever
  12. from langchain.retrievers import (
  13. ContextualCompressionRetriever,
  14. EnsembleRetriever,
  15. )
  16. from typing import Optional
  17. from utils.misc import get_last_user_message, add_or_update_system_message
  18. from config import SRC_LOG_LEVELS, CHROMA_CLIENT
  19. log = logging.getLogger(__name__)
  20. log.setLevel(SRC_LOG_LEVELS["RAG"])
  21. def query_doc(
  22. collection_name: str,
  23. query: str,
  24. embedding_function,
  25. k: int,
  26. ):
  27. try:
  28. collection = CHROMA_CLIENT.get_collection(name=collection_name)
  29. query_embeddings = embedding_function(query)
  30. result = collection.query(
  31. query_embeddings=[query_embeddings],
  32. n_results=k,
  33. )
  34. log.info(f"query_doc:result {result}")
  35. return result
  36. except Exception as e:
  37. raise e
  38. def query_doc_with_hybrid_search(
  39. collection_name: str,
  40. query: str,
  41. embedding_function,
  42. k: int,
  43. reranking_function,
  44. r: float,
  45. ):
  46. try:
  47. collection = CHROMA_CLIENT.get_collection(name=collection_name)
  48. documents = collection.get() # get all documents
  49. bm25_retriever = BM25Retriever.from_texts(
  50. texts=documents.get("documents"),
  51. metadatas=documents.get("metadatas"),
  52. )
  53. bm25_retriever.k = k
  54. chroma_retriever = ChromaRetriever(
  55. collection=collection,
  56. embedding_function=embedding_function,
  57. top_n=k,
  58. )
  59. ensemble_retriever = EnsembleRetriever(
  60. retrievers=[bm25_retriever, chroma_retriever], weights=[0.5, 0.5]
  61. )
  62. compressor = RerankCompressor(
  63. embedding_function=embedding_function,
  64. top_n=k,
  65. reranking_function=reranking_function,
  66. r_score=r,
  67. )
  68. compression_retriever = ContextualCompressionRetriever(
  69. base_compressor=compressor, base_retriever=ensemble_retriever
  70. )
  71. result = compression_retriever.invoke(query)
  72. result = {
  73. "distances": [[d.metadata.get("score") for d in result]],
  74. "documents": [[d.page_content for d in result]],
  75. "metadatas": [[d.metadata for d in result]],
  76. }
  77. log.info(f"query_doc_with_hybrid_search:result {result}")
  78. return result
  79. except Exception as e:
  80. raise e
  81. def merge_and_sort_query_results(query_results, k, reverse=False):
  82. # Initialize lists to store combined data
  83. combined_distances = []
  84. combined_documents = []
  85. combined_metadatas = []
  86. for data in query_results:
  87. combined_distances.extend(data["distances"][0])
  88. combined_documents.extend(data["documents"][0])
  89. combined_metadatas.extend(data["metadatas"][0])
  90. # Create a list of tuples (distance, document, metadata)
  91. combined = list(zip(combined_distances, combined_documents, combined_metadatas))
  92. # Sort the list based on distances
  93. combined.sort(key=lambda x: x[0], reverse=reverse)
  94. # We don't have anything :-(
  95. if not combined:
  96. sorted_distances = []
  97. sorted_documents = []
  98. sorted_metadatas = []
  99. else:
  100. # Unzip the sorted list
  101. sorted_distances, sorted_documents, sorted_metadatas = zip(*combined)
  102. # Slicing the lists to include only k elements
  103. sorted_distances = list(sorted_distances)[:k]
  104. sorted_documents = list(sorted_documents)[:k]
  105. sorted_metadatas = list(sorted_metadatas)[:k]
  106. # Create the output dictionary
  107. result = {
  108. "distances": [sorted_distances],
  109. "documents": [sorted_documents],
  110. "metadatas": [sorted_metadatas],
  111. }
  112. return result
  113. def query_collection(
  114. collection_names: List[str],
  115. query: str,
  116. embedding_function,
  117. k: int,
  118. ):
  119. results = []
  120. for collection_name in collection_names:
  121. try:
  122. result = query_doc(
  123. collection_name=collection_name,
  124. query=query,
  125. k=k,
  126. embedding_function=embedding_function,
  127. )
  128. results.append(result)
  129. except:
  130. pass
  131. return merge_and_sort_query_results(results, k=k)
  132. def query_collection_with_hybrid_search(
  133. collection_names: List[str],
  134. query: str,
  135. embedding_function,
  136. k: int,
  137. reranking_function,
  138. r: float,
  139. ):
  140. results = []
  141. for collection_name in collection_names:
  142. try:
  143. result = query_doc_with_hybrid_search(
  144. collection_name=collection_name,
  145. query=query,
  146. embedding_function=embedding_function,
  147. k=k,
  148. reranking_function=reranking_function,
  149. r=r,
  150. )
  151. results.append(result)
  152. except:
  153. pass
  154. return merge_and_sort_query_results(results, k=k, reverse=True)
  155. def rag_template(template: str, context: str, query: str):
  156. template = template.replace("[context]", context)
  157. template = template.replace("[query]", query)
  158. return template
  159. def get_embedding_function(
  160. embedding_engine,
  161. embedding_model,
  162. embedding_function,
  163. openai_key,
  164. openai_url,
  165. batch_size,
  166. ):
  167. if embedding_engine == "":
  168. return lambda query: embedding_function.encode(query).tolist()
  169. elif embedding_engine in ["ollama", "openai"]:
  170. if embedding_engine == "ollama":
  171. func = lambda query: generate_ollama_embeddings(
  172. GenerateEmbeddingsForm(
  173. **{
  174. "model": embedding_model,
  175. "prompt": query,
  176. }
  177. )
  178. )
  179. elif embedding_engine == "openai":
  180. func = lambda query: generate_openai_embeddings(
  181. model=embedding_model,
  182. text=query,
  183. key=openai_key,
  184. url=openai_url,
  185. )
  186. def generate_multiple(query, f):
  187. if isinstance(query, list):
  188. if embedding_engine == "openai":
  189. embeddings = []
  190. for i in range(0, len(query), batch_size):
  191. embeddings.extend(f(query[i : i + batch_size]))
  192. return embeddings
  193. else:
  194. return [f(q) for q in query]
  195. else:
  196. return f(query)
  197. return lambda query: generate_multiple(query, func)
  198. def get_rag_context(
  199. docs,
  200. messages,
  201. embedding_function,
  202. k,
  203. reranking_function,
  204. r,
  205. hybrid_search,
  206. ):
  207. log.debug(f"docs: {docs} {messages} {embedding_function} {reranking_function}")
  208. query = get_last_user_message(messages)
  209. extracted_collections = []
  210. relevant_contexts = []
  211. for doc in docs:
  212. context = None
  213. collection_names = (
  214. doc["collection_names"]
  215. if doc["type"] == "collection"
  216. else [doc["collection_name"]]
  217. )
  218. collection_names = set(collection_names).difference(extracted_collections)
  219. if not collection_names:
  220. log.debug(f"skipping {doc} as it has already been extracted")
  221. continue
  222. try:
  223. if doc["type"] == "text":
  224. context = doc["content"]
  225. else:
  226. if hybrid_search:
  227. context = query_collection_with_hybrid_search(
  228. collection_names=collection_names,
  229. query=query,
  230. embedding_function=embedding_function,
  231. k=k,
  232. reranking_function=reranking_function,
  233. r=r,
  234. )
  235. else:
  236. context = query_collection(
  237. collection_names=collection_names,
  238. query=query,
  239. embedding_function=embedding_function,
  240. k=k,
  241. )
  242. except Exception as e:
  243. log.exception(e)
  244. context = None
  245. if context:
  246. relevant_contexts.append({**context, "source": doc})
  247. extracted_collections.extend(collection_names)
  248. context_string = ""
  249. citations = []
  250. for context in relevant_contexts:
  251. try:
  252. if "documents" in context:
  253. context_string += "\n\n".join(
  254. [text for text in context["documents"][0] if text is not None]
  255. )
  256. if "metadatas" in context:
  257. citations.append(
  258. {
  259. "source": context["source"],
  260. "document": context["documents"][0],
  261. "metadata": context["metadatas"][0],
  262. }
  263. )
  264. except Exception as e:
  265. log.exception(e)
  266. context_string = context_string.strip()
  267. return context_string, citations
  268. def get_model_path(model: str, update_model: bool = False):
  269. # Construct huggingface_hub kwargs with local_files_only to return the snapshot path
  270. cache_dir = os.getenv("SENTENCE_TRANSFORMERS_HOME")
  271. local_files_only = not update_model
  272. snapshot_kwargs = {
  273. "cache_dir": cache_dir,
  274. "local_files_only": local_files_only,
  275. }
  276. log.debug(f"model: {model}")
  277. log.debug(f"snapshot_kwargs: {snapshot_kwargs}")
  278. # Inspiration from upstream sentence_transformers
  279. if (
  280. os.path.exists(model)
  281. or ("\\" in model or model.count("/") > 1)
  282. and local_files_only
  283. ):
  284. # If fully qualified path exists, return input, else set repo_id
  285. return model
  286. elif "/" not in model:
  287. # Set valid repo_id for model short-name
  288. model = "sentence-transformers" + "/" + model
  289. snapshot_kwargs["repo_id"] = model
  290. # Attempt to query the huggingface_hub library to determine the local path and/or to update
  291. try:
  292. model_repo_path = snapshot_download(**snapshot_kwargs)
  293. log.debug(f"model_repo_path: {model_repo_path}")
  294. return model_repo_path
  295. except Exception as e:
  296. log.exception(f"Cannot determine model snapshot path: {e}")
  297. return model
  298. def generate_openai_embeddings(
  299. model: str,
  300. text: Union[str, list[str]],
  301. key: str,
  302. url: str = "https://api.openai.com/v1",
  303. ):
  304. if isinstance(text, list):
  305. embeddings = generate_openai_batch_embeddings(model, text, key, url)
  306. else:
  307. embeddings = generate_openai_batch_embeddings(model, [text], key, url)
  308. return embeddings[0] if isinstance(text, str) else embeddings
  309. def generate_openai_batch_embeddings(
  310. model: str, texts: list[str], key: str, url: str = "https://api.openai.com/v1"
  311. ) -> Optional[list[list[float]]]:
  312. try:
  313. r = requests.post(
  314. f"{url}/embeddings",
  315. headers={
  316. "Content-Type": "application/json",
  317. "Authorization": f"Bearer {key}",
  318. },
  319. json={"input": texts, "model": model},
  320. )
  321. r.raise_for_status()
  322. data = r.json()
  323. if "data" in data:
  324. return [elem["embedding"] for elem in data["data"]]
  325. else:
  326. raise "Something went wrong :/"
  327. except Exception as e:
  328. print(e)
  329. return None
  330. from typing import Any
  331. from langchain_core.retrievers import BaseRetriever
  332. from langchain_core.callbacks import CallbackManagerForRetrieverRun
  333. class ChromaRetriever(BaseRetriever):
  334. collection: Any
  335. embedding_function: Any
  336. top_n: int
  337. def _get_relevant_documents(
  338. self,
  339. query: str,
  340. *,
  341. run_manager: CallbackManagerForRetrieverRun,
  342. ) -> List[Document]:
  343. query_embeddings = self.embedding_function(query)
  344. results = self.collection.query(
  345. query_embeddings=[query_embeddings],
  346. n_results=self.top_n,
  347. )
  348. ids = results["ids"][0]
  349. metadatas = results["metadatas"][0]
  350. documents = results["documents"][0]
  351. results = []
  352. for idx in range(len(ids)):
  353. results.append(
  354. Document(
  355. metadata=metadatas[idx],
  356. page_content=documents[idx],
  357. )
  358. )
  359. return results
  360. import operator
  361. from typing import Optional, Sequence
  362. from langchain_core.documents import BaseDocumentCompressor, Document
  363. from langchain_core.callbacks import Callbacks
  364. from langchain_core.pydantic_v1 import Extra
  365. from sentence_transformers import util
  366. class RerankCompressor(BaseDocumentCompressor):
  367. embedding_function: Any
  368. top_n: int
  369. reranking_function: Any
  370. r_score: float
  371. class Config:
  372. extra = Extra.forbid
  373. arbitrary_types_allowed = True
  374. def compress_documents(
  375. self,
  376. documents: Sequence[Document],
  377. query: str,
  378. callbacks: Optional[Callbacks] = None,
  379. ) -> Sequence[Document]:
  380. reranking = self.reranking_function is not None
  381. if reranking:
  382. scores = self.reranking_function.predict(
  383. [(query, doc.page_content) for doc in documents]
  384. )
  385. else:
  386. query_embedding = self.embedding_function(query)
  387. document_embedding = self.embedding_function(
  388. [doc.page_content for doc in documents]
  389. )
  390. scores = util.cos_sim(query_embedding, document_embedding)[0]
  391. docs_with_scores = list(zip(documents, scores.tolist()))
  392. if self.r_score:
  393. docs_with_scores = [
  394. (d, s) for d, s in docs_with_scores if s >= self.r_score
  395. ]
  396. result = sorted(docs_with_scores, key=operator.itemgetter(1), reverse=True)
  397. final_results = []
  398. for doc, doc_score in result[: self.top_n]:
  399. metadata = doc.metadata
  400. metadata["score"] = doc_score
  401. doc = Document(
  402. page_content=doc.page_content,
  403. metadata=metadata,
  404. )
  405. final_results.append(doc)
  406. return final_results