utils.py 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491
  1. import logging
  2. import os
  3. from typing import Optional, Union
  4. import requests
  5. from huggingface_hub import snapshot_download
  6. from langchain.retrievers import ContextualCompressionRetriever, EnsembleRetriever
  7. from langchain_community.retrievers import BM25Retriever
  8. from langchain_core.documents import Document
  9. from open_webui.apps.ollama.main import (
  10. GenerateEmbeddingsForm,
  11. generate_ollama_embeddings,
  12. )
  13. from open_webui.apps.rag.vector.connector import VECTOR_DB_CLIENT
  14. from open_webui.utils.misc import get_last_user_message
  15. from open_webui.env import SRC_LOG_LEVELS
  16. log = logging.getLogger(__name__)
  17. log.setLevel(SRC_LOG_LEVELS["RAG"])
  18. from typing import Any
  19. from langchain_core.callbacks import CallbackManagerForRetrieverRun
  20. from langchain_core.retrievers import BaseRetriever
  21. class VectorSearchRetriever(BaseRetriever):
  22. collection_name: Any
  23. embedding_function: Any
  24. top_k: int
  25. def _get_relevant_documents(
  26. self,
  27. query: str,
  28. *,
  29. run_manager: CallbackManagerForRetrieverRun,
  30. ) -> list[Document]:
  31. result = VECTOR_DB_CLIENT.search(
  32. collection_name=self.collection_name,
  33. vectors=[self.embedding_function(query)],
  34. limit=self.top_k,
  35. )
  36. ids = result["ids"][0]
  37. metadatas = result["metadatas"][0]
  38. documents = result["documents"][0]
  39. results = []
  40. for idx in range(len(ids)):
  41. results.append(
  42. Document(
  43. metadata=metadatas[idx],
  44. page_content=documents[idx],
  45. )
  46. )
  47. return results
  48. def query_doc(
  49. collection_name: str,
  50. query: str,
  51. embedding_function,
  52. k: int,
  53. ):
  54. try:
  55. result = VECTOR_DB_CLIENT.search(
  56. collection_name=collection_name,
  57. vectors=[embedding_function(query)],
  58. limit=k,
  59. )
  60. print("result", result)
  61. log.info(f"query_doc:result {result}")
  62. return result
  63. except Exception as e:
  64. print(e)
  65. raise e
  66. def query_doc_with_hybrid_search(
  67. collection_name: str,
  68. query: str,
  69. embedding_function,
  70. k: int,
  71. reranking_function,
  72. r: float,
  73. ):
  74. try:
  75. result = VECTOR_DB_CLIENT.get(collection_name=collection_name)
  76. bm25_retriever = BM25Retriever.from_texts(
  77. texts=result.documents,
  78. metadatas=result.metadatas,
  79. )
  80. bm25_retriever.k = k
  81. vector_search_retriever = VectorSearchRetriever(
  82. collection_name=collection_name,
  83. embedding_function=embedding_function,
  84. top_k=k,
  85. )
  86. ensemble_retriever = EnsembleRetriever(
  87. retrievers=[bm25_retriever, vector_search_retriever], weights=[0.5, 0.5]
  88. )
  89. compressor = RerankCompressor(
  90. embedding_function=embedding_function,
  91. top_n=k,
  92. reranking_function=reranking_function,
  93. r_score=r,
  94. )
  95. compression_retriever = ContextualCompressionRetriever(
  96. base_compressor=compressor, base_retriever=ensemble_retriever
  97. )
  98. result = compression_retriever.invoke(query)
  99. result = {
  100. "distances": [[d.metadata.get("score") for d in result]],
  101. "documents": [[d.page_content for d in result]],
  102. "metadatas": [[d.metadata for d in result]],
  103. }
  104. log.info(f"query_doc_with_hybrid_search:result {result}")
  105. return result
  106. except Exception as e:
  107. raise e
  108. def merge_and_sort_query_results(query_results, k, reverse=False):
  109. # Initialize lists to store combined data
  110. combined_distances = []
  111. combined_documents = []
  112. combined_metadatas = []
  113. for data in query_results:
  114. combined_distances.extend(data["distances"][0])
  115. combined_documents.extend(data["documents"][0])
  116. combined_metadatas.extend(data["metadatas"][0])
  117. # Create a list of tuples (distance, document, metadata)
  118. combined = list(zip(combined_distances, combined_documents, combined_metadatas))
  119. # Sort the list based on distances
  120. combined.sort(key=lambda x: x[0], reverse=reverse)
  121. # We don't have anything :-(
  122. if not combined:
  123. sorted_distances = []
  124. sorted_documents = []
  125. sorted_metadatas = []
  126. else:
  127. # Unzip the sorted list
  128. sorted_distances, sorted_documents, sorted_metadatas = zip(*combined)
  129. # Slicing the lists to include only k elements
  130. sorted_distances = list(sorted_distances)[:k]
  131. sorted_documents = list(sorted_documents)[:k]
  132. sorted_metadatas = list(sorted_metadatas)[:k]
  133. # Create the output dictionary
  134. result = {
  135. "distances": [sorted_distances],
  136. "documents": [sorted_documents],
  137. "metadatas": [sorted_metadatas],
  138. }
  139. return result
  140. def query_collection(
  141. collection_names: list[str],
  142. query: str,
  143. embedding_function,
  144. k: int,
  145. ):
  146. results = []
  147. for collection_name in collection_names:
  148. if collection_name:
  149. try:
  150. result = query_doc(
  151. collection_name=collection_name,
  152. query=query,
  153. k=k,
  154. embedding_function=embedding_function,
  155. )
  156. results.append(result)
  157. except Exception:
  158. pass
  159. else:
  160. pass
  161. return merge_and_sort_query_results(results, k=k)
  162. def query_collection_with_hybrid_search(
  163. collection_names: list[str],
  164. query: str,
  165. embedding_function,
  166. k: int,
  167. reranking_function,
  168. r: float,
  169. ):
  170. results = []
  171. for collection_name in collection_names:
  172. try:
  173. result = query_doc_with_hybrid_search(
  174. collection_name=collection_name,
  175. query=query,
  176. embedding_function=embedding_function,
  177. k=k,
  178. reranking_function=reranking_function,
  179. r=r,
  180. )
  181. results.append(result)
  182. except Exception:
  183. pass
  184. return merge_and_sort_query_results(results, k=k, reverse=True)
  185. def rag_template(template: str, context: str, query: str):
  186. template = template.replace("[context]", context)
  187. template = template.replace("[query]", query)
  188. return template
  189. def get_embedding_function(
  190. embedding_engine,
  191. embedding_model,
  192. embedding_function,
  193. openai_key,
  194. openai_url,
  195. batch_size,
  196. ):
  197. if embedding_engine == "":
  198. return lambda query: embedding_function.encode(query).tolist()
  199. elif embedding_engine in ["ollama", "openai"]:
  200. if embedding_engine == "ollama":
  201. func = lambda query: generate_ollama_embeddings(
  202. GenerateEmbeddingsForm(
  203. **{
  204. "model": embedding_model,
  205. "prompt": query,
  206. }
  207. )
  208. )
  209. elif embedding_engine == "openai":
  210. func = lambda query: generate_openai_embeddings(
  211. model=embedding_model,
  212. text=query,
  213. key=openai_key,
  214. url=openai_url,
  215. )
  216. def generate_multiple(query, f):
  217. if isinstance(query, list):
  218. if embedding_engine == "openai":
  219. embeddings = []
  220. for i in range(0, len(query), batch_size):
  221. embeddings.extend(f(query[i : i + batch_size]))
  222. return embeddings
  223. else:
  224. return [f(q) for q in query]
  225. else:
  226. return f(query)
  227. return lambda query: generate_multiple(query, func)
  228. def get_rag_context(
  229. files,
  230. messages,
  231. embedding_function,
  232. k,
  233. reranking_function,
  234. r,
  235. hybrid_search,
  236. ):
  237. log.debug(f"files: {files} {messages} {embedding_function} {reranking_function}")
  238. query = get_last_user_message(messages)
  239. extracted_collections = []
  240. relevant_contexts = []
  241. for file in files:
  242. context = None
  243. collection_names = (
  244. file["collection_names"]
  245. if file["type"] == "collection"
  246. else [file["collection_name"]] if file["collection_name"] else []
  247. )
  248. collection_names = set(collection_names).difference(extracted_collections)
  249. if not collection_names:
  250. log.debug(f"skipping {file} as it has already been extracted")
  251. continue
  252. try:
  253. if file["type"] == "text":
  254. context = file["content"]
  255. else:
  256. if hybrid_search:
  257. context = query_collection_with_hybrid_search(
  258. collection_names=collection_names,
  259. query=query,
  260. embedding_function=embedding_function,
  261. k=k,
  262. reranking_function=reranking_function,
  263. r=r,
  264. )
  265. else:
  266. context = query_collection(
  267. collection_names=collection_names,
  268. query=query,
  269. embedding_function=embedding_function,
  270. k=k,
  271. )
  272. except Exception as e:
  273. log.exception(e)
  274. context = None
  275. if context:
  276. relevant_contexts.append({**context, "source": file})
  277. extracted_collections.extend(collection_names)
  278. contexts = []
  279. citations = []
  280. for context in relevant_contexts:
  281. try:
  282. if "documents" in context:
  283. contexts.append(
  284. "\n\n".join(
  285. [text for text in context["documents"][0] if text is not None]
  286. )
  287. )
  288. if "metadatas" in context:
  289. citations.append(
  290. {
  291. "source": context["source"],
  292. "document": context["documents"][0],
  293. "metadata": context["metadatas"][0],
  294. }
  295. )
  296. except Exception as e:
  297. log.exception(e)
  298. return contexts, citations
  299. def get_model_path(model: str, update_model: bool = False):
  300. # Construct huggingface_hub kwargs with local_files_only to return the snapshot path
  301. cache_dir = os.getenv("SENTENCE_TRANSFORMERS_HOME")
  302. local_files_only = not update_model
  303. snapshot_kwargs = {
  304. "cache_dir": cache_dir,
  305. "local_files_only": local_files_only,
  306. }
  307. log.debug(f"model: {model}")
  308. log.debug(f"snapshot_kwargs: {snapshot_kwargs}")
  309. # Inspiration from upstream sentence_transformers
  310. if (
  311. os.path.exists(model)
  312. or ("\\" in model or model.count("/") > 1)
  313. and local_files_only
  314. ):
  315. # If fully qualified path exists, return input, else set repo_id
  316. return model
  317. elif "/" not in model:
  318. # Set valid repo_id for model short-name
  319. model = "sentence-transformers" + "/" + model
  320. snapshot_kwargs["repo_id"] = model
  321. # Attempt to query the huggingface_hub library to determine the local path and/or to update
  322. try:
  323. model_repo_path = snapshot_download(**snapshot_kwargs)
  324. log.debug(f"model_repo_path: {model_repo_path}")
  325. return model_repo_path
  326. except Exception as e:
  327. log.exception(f"Cannot determine model snapshot path: {e}")
  328. return model
  329. def generate_openai_embeddings(
  330. model: str,
  331. text: Union[str, list[str]],
  332. key: str,
  333. url: str = "https://api.openai.com/v1",
  334. ):
  335. if isinstance(text, list):
  336. embeddings = generate_openai_batch_embeddings(model, text, key, url)
  337. else:
  338. embeddings = generate_openai_batch_embeddings(model, [text], key, url)
  339. return embeddings[0] if isinstance(text, str) else embeddings
  340. def generate_openai_batch_embeddings(
  341. model: str, texts: list[str], key: str, url: str = "https://api.openai.com/v1"
  342. ) -> Optional[list[list[float]]]:
  343. try:
  344. r = requests.post(
  345. f"{url}/embeddings",
  346. headers={
  347. "Content-Type": "application/json",
  348. "Authorization": f"Bearer {key}",
  349. },
  350. json={"input": texts, "model": model},
  351. )
  352. r.raise_for_status()
  353. data = r.json()
  354. if "data" in data:
  355. return [elem["embedding"] for elem in data["data"]]
  356. else:
  357. raise "Something went wrong :/"
  358. except Exception as e:
  359. print(e)
  360. return None
  361. import operator
  362. from typing import Optional, Sequence
  363. from langchain_core.callbacks import Callbacks
  364. from langchain_core.documents import BaseDocumentCompressor, Document
  365. from langchain_core.pydantic_v1 import Extra
  366. class RerankCompressor(BaseDocumentCompressor):
  367. embedding_function: Any
  368. top_n: int
  369. reranking_function: Any
  370. r_score: float
  371. class Config:
  372. extra = Extra.forbid
  373. arbitrary_types_allowed = True
  374. def compress_documents(
  375. self,
  376. documents: Sequence[Document],
  377. query: str,
  378. callbacks: Optional[Callbacks] = None,
  379. ) -> Sequence[Document]:
  380. reranking = self.reranking_function is not None
  381. if reranking:
  382. scores = self.reranking_function.predict(
  383. [(query, doc.page_content) for doc in documents]
  384. )
  385. else:
  386. from sentence_transformers import util
  387. query_embedding = self.embedding_function(query)
  388. document_embedding = self.embedding_function(
  389. [doc.page_content for doc in documents]
  390. )
  391. scores = util.cos_sim(query_embedding, document_embedding)[0]
  392. docs_with_scores = list(zip(documents, scores.tolist()))
  393. if self.r_score:
  394. docs_with_scores = [
  395. (d, s) for d, s in docs_with_scores if s >= self.r_score
  396. ]
  397. result = sorted(docs_with_scores, key=operator.itemgetter(1), reverse=True)
  398. final_results = []
  399. for doc, doc_score in result[: self.top_n]:
  400. metadata = doc.metadata
  401. metadata["score"] = doc_score
  402. doc = Document(
  403. page_content=doc.page_content,
  404. metadata=metadata,
  405. )
  406. final_results.append(doc)
  407. return final_results