chroma.py 3.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108
  1. import chromadb
  2. from chromadb import Settings
  3. from chromadb.utils.batch_utils import create_batches
  4. from typing import Optional
  5. from open_webui.apps.rag.vector.main import VectorItem, QueryResult
  6. from open_webui.config import (
  7. CHROMA_DATA_PATH,
  8. CHROMA_HTTP_HOST,
  9. CHROMA_HTTP_PORT,
  10. CHROMA_HTTP_HEADERS,
  11. CHROMA_HTTP_SSL,
  12. CHROMA_TENANT,
  13. CHROMA_DATABASE,
  14. )
  15. class ChromaClient:
  16. def __init__(self):
  17. if CHROMA_HTTP_HOST != "":
  18. self.client = chromadb.HttpClient(
  19. host=CHROMA_HTTP_HOST,
  20. port=CHROMA_HTTP_PORT,
  21. headers=CHROMA_HTTP_HEADERS,
  22. ssl=CHROMA_HTTP_SSL,
  23. tenant=CHROMA_TENANT,
  24. database=CHROMA_DATABASE,
  25. settings=Settings(allow_reset=True, anonymized_telemetry=False),
  26. )
  27. else:
  28. self.client = chromadb.PersistentClient(
  29. path=CHROMA_DATA_PATH,
  30. settings=Settings(allow_reset=True, anonymized_telemetry=False),
  31. tenant=CHROMA_TENANT,
  32. database=CHROMA_DATABASE,
  33. )
  34. def list_collections(self) -> list[str]:
  35. collections = self.client.list_collections()
  36. return [collection.name for collection in collections]
  37. def create_collection(self, collection_name: str):
  38. return self.client.create_collection(name=collection_name)
  39. def delete_collection(self, collection_name: str):
  40. return self.client.delete_collection(name=collection_name)
  41. def search(
  42. self, collection_name: str, vectors: list[list[float | int]], limit: int
  43. ) -> Optional[QueryResult]:
  44. collection = self.client.get_collection(name=collection_name)
  45. if collection:
  46. result = collection.query(
  47. query_embeddings=vectors,
  48. n_results=limit,
  49. )
  50. return {
  51. "ids": result["ids"],
  52. "distances": result["distances"],
  53. "documents": result["documents"],
  54. "metadatas": result["metadatas"],
  55. }
  56. return None
  57. def get(self, collection_name: str) -> Optional[QueryResult]:
  58. collection = self.client.get_collection(name=collection_name)
  59. if collection:
  60. return collection.get()
  61. return None
  62. def insert(self, collection_name: str, items: list[VectorItem]):
  63. collection = self.client.get_or_create_collection(name=collection_name)
  64. ids = [item["id"] for item in items]
  65. documents = [item["text"] for item in items]
  66. embeddings = [item["vector"] for item in items]
  67. metadatas = [item["metadata"] for item in items]
  68. for batch in create_batches(
  69. api=self.client,
  70. documents=documents,
  71. embeddings=embeddings,
  72. ids=ids,
  73. metadatas=metadatas,
  74. ):
  75. collection.add(*batch)
  76. def upsert(self, collection_name: str, items: list[VectorItem]):
  77. collection = self.client.get_or_create_collection(name=collection_name)
  78. ids = [item["id"] for item in items]
  79. documents = [item["text"] for item in items]
  80. embeddings = [item["vector"] for item in items]
  81. metadata = [item["metadata"] for item in items]
  82. collection.upsert(
  83. ids=ids, documents=documents, embeddings=embeddings, metadata=metadata
  84. )
  85. def delete(self, collection_name: str, ids: list[str]):
  86. collection = self.client.get_collection(name=collection_name)
  87. if collection:
  88. collection.delete(ids=ids)
  89. def reset(self):
  90. return self.client.reset()