qdrant.py 6.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174
  1. from typing import Optional
  2. from qdrant_client import QdrantClient as Qclient
  3. from qdrant_client.http.models import PointStruct
  4. from qdrant_client.models import models
  5. from open_webui.apps.retrieval.vector.main import VectorItem, SearchResult, GetResult
  6. from open_webui.config import QDRANT_URI
  7. class QdrantClient:
  8. def __init__(self):
  9. self.collection_prefix = "open-webui"
  10. self.QDRANT_URI = QDRANT_URI
  11. self.client = Qclient(url=self.QDRANT_URI) if self.QDRANT_URI else None
  12. def _result_to_get_result(self, points) -> GetResult:
  13. ids = []
  14. documents = []
  15. metadatas = []
  16. for point in points:
  17. payload = point.payload
  18. ids.append(point.id)
  19. documents.append(payload["text"])
  20. metadatas.append(payload["metadata"])
  21. return GetResult(
  22. **{
  23. "ids": [ids],
  24. "documents": [documents],
  25. "metadatas": [metadatas],
  26. }
  27. )
  28. def _create_collection(self, collection_name: str, dimension: int):
  29. collection_name_with_prefix = f"{self.collection_prefix}_{collection_name}"
  30. self.client.create_collection(
  31. collection_name=collection_name_with_prefix,
  32. vectors_config=models.VectorParams(size=dimension, distance=models.Distance.COSINE),
  33. )
  34. print(f"collection {collection_name_with_prefix} successfully created!")
  35. def _create_collection_if_not_exists(self, collection_name, dimension):
  36. if not self.has_collection(
  37. collection_name=collection_name
  38. ):
  39. self._create_collection(
  40. collection_name=collection_name, dimension=dimension
  41. )
  42. def _create_points(self, items: list[VectorItem]):
  43. return [
  44. PointStruct(
  45. id=item["id"],
  46. vector=item["vector"],
  47. payload={
  48. "text": item["text"],
  49. "metadata": item["metadata"]
  50. },
  51. )
  52. for item in items
  53. ]
  54. def has_collection(self, collection_name: str) -> bool:
  55. return self.client.collection_exists(f"{self.collection_prefix}_{collection_name}")
  56. def delete_collection(self, collection_name: str):
  57. return self.client.delete_collection(collection_name=f"{self.collection_prefix}_{collection_name}")
  58. def search(
  59. self, collection_name: str, vectors: list[list[float | int]], limit: int
  60. ) -> Optional[SearchResult]:
  61. # Search for the nearest neighbor items based on the vectors and return 'limit' number of results.
  62. if limit is None:
  63. limit=10000000 # otherwise qdrant would set limit to 10!
  64. query_response = self.client.query_points(
  65. collection_name=f"{self.collection_prefix}_{collection_name}",
  66. query=vectors[0],
  67. limit=limit,
  68. )
  69. get_result = self._result_to_get_result(query_response.points)
  70. return SearchResult(
  71. ids=get_result.ids,
  72. documents=get_result.documents,
  73. metadatas=get_result.metadatas,
  74. distances=[[point.score for point in query_response.points]]
  75. )
  76. def query(self, collection_name: str, filter: dict, limit: Optional[int] = None):
  77. # Construct the filter string for querying
  78. if not self.has_collection(collection_name):
  79. return None
  80. try:
  81. if limit is None:
  82. limit=10000000 # otherwise qdrant would set limit to 10!
  83. field_conditions = []
  84. for key, value in filter.items():
  85. field_conditions.append(
  86. models.FieldCondition(key=f"metadata.{key}", match=models.MatchValue(value=value)))
  87. points = self.client.query_points(
  88. collection_name=f"{self.collection_prefix}_{collection_name}",
  89. query_filter=models.Filter(should=field_conditions),
  90. limit=limit,
  91. )
  92. return self._result_to_get_result(points.points)
  93. except Exception as e:
  94. print(e)
  95. return None
  96. def get(self, collection_name: str) -> Optional[GetResult]:
  97. # Get all the items in the collection.
  98. points = self.client.query_points(
  99. collection_name=f"{self.collection_prefix}_{collection_name}",
  100. limit=10000000 # default is 10
  101. )
  102. return self._result_to_get_result(points.points)
  103. def insert(self, collection_name: str, items: list[VectorItem]):
  104. # Insert the items into the collection, if the collection does not exist, it will be created.
  105. self._create_collection_if_not_exists(collection_name, len(items[0]["vector"]))
  106. points = self._create_points(items)
  107. self.client.upload_points(f"{self.collection_prefix}_{collection_name}", points)
  108. def upsert(self, collection_name: str, items: list[VectorItem]):
  109. # Update the items in the collection, if the items are not present, insert them. If the collection does not exist, it will be created.
  110. self._create_collection_if_not_exists(collection_name, len(items[0]["vector"]))
  111. points = self._create_points(items)
  112. return self.client.upsert(f"{self.collection_prefix}_{collection_name}", points)
  113. def delete(
  114. self,
  115. collection_name: str,
  116. ids: Optional[list[str]] = None,
  117. filter: Optional[dict] = None,
  118. ):
  119. # Delete the items from the collection based on the ids.
  120. field_conditions = []
  121. if ids:
  122. for id_value in ids:
  123. field_conditions.append(
  124. models.FieldCondition(
  125. key="metadata.id",
  126. match=models.MatchValue(value=id_value),
  127. ),
  128. ),
  129. elif filter:
  130. for key, value in filter.items():
  131. field_conditions.append(
  132. models.FieldCondition(
  133. key=f"metadata.{key}",
  134. match=models.MatchValue(value=value),
  135. ),
  136. ),
  137. return self.client.delete(
  138. collection_name=f"{self.collection_prefix}_{collection_name}",
  139. points_selector=models.FilterSelector(
  140. filter=models.Filter(
  141. must=field_conditions
  142. )
  143. ),
  144. )
  145. def reset(self):
  146. # Resets the database. This will delete all collections and item entries.
  147. collection_names = self.client.get_collections().collections
  148. for collection_name in collection_names:
  149. if collection_name.name.startswith(self.collection_prefix):
  150. self.client.delete_collection(collection_name=collection_name.name)