utils.py 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497
  1. import os
  2. import logging
  3. import requests
  4. from typing import Union
  5. from apps.ollama.main import (
  6. generate_ollama_embeddings,
  7. GenerateEmbeddingsForm,
  8. )
  9. from huggingface_hub import snapshot_download
  10. from langchain_core.documents import Document
  11. from langchain_community.retrievers import BM25Retriever
  12. from langchain.retrievers import (
  13. ContextualCompressionRetriever,
  14. EnsembleRetriever,
  15. )
  16. from typing import Optional
  17. from utils.misc import get_last_user_message, add_or_update_system_message
  18. from config import SRC_LOG_LEVELS, CHROMA_CLIENT
  19. log = logging.getLogger(__name__)
  20. log.setLevel(SRC_LOG_LEVELS["RAG"])
  21. def query_doc(
  22. collection_name: str,
  23. query: str,
  24. embedding_function,
  25. k: int,
  26. ):
  27. try:
  28. collection = CHROMA_CLIENT.get_collection(name=collection_name)
  29. query_embeddings = embedding_function(query)
  30. result = collection.query(
  31. query_embeddings=[query_embeddings],
  32. n_results=k,
  33. )
  34. log.info(f"query_doc:result {result}")
  35. return result
  36. except Exception as e:
  37. raise e
  38. def query_doc_with_hybrid_search(
  39. collection_name: str,
  40. query: str,
  41. embedding_function,
  42. k: int,
  43. reranking_function,
  44. r: float,
  45. ):
  46. try:
  47. collection = CHROMA_CLIENT.get_collection(name=collection_name)
  48. documents = collection.get() # get all documents
  49. bm25_retriever = BM25Retriever.from_texts(
  50. texts=documents.get("documents"),
  51. metadatas=documents.get("metadatas"),
  52. )
  53. bm25_retriever.k = k
  54. chroma_retriever = ChromaRetriever(
  55. collection=collection,
  56. embedding_function=embedding_function,
  57. top_n=k,
  58. )
  59. ensemble_retriever = EnsembleRetriever(
  60. retrievers=[bm25_retriever, chroma_retriever], weights=[0.5, 0.5]
  61. )
  62. compressor = RerankCompressor(
  63. embedding_function=embedding_function,
  64. top_n=k,
  65. reranking_function=reranking_function,
  66. r_score=r,
  67. )
  68. compression_retriever = ContextualCompressionRetriever(
  69. base_compressor=compressor, base_retriever=ensemble_retriever
  70. )
  71. result = compression_retriever.invoke(query)
  72. result = {
  73. "distances": [[d.metadata.get("score") for d in result]],
  74. "documents": [[d.page_content for d in result]],
  75. "metadatas": [[d.metadata for d in result]],
  76. }
  77. log.info(f"query_doc_with_hybrid_search:result {result}")
  78. return result
  79. except Exception as e:
  80. raise e
  81. def merge_and_sort_query_results(query_results, k, reverse=False):
  82. # Initialize lists to store combined data
  83. combined_distances = []
  84. combined_documents = []
  85. combined_metadatas = []
  86. for data in query_results:
  87. combined_distances.extend(data["distances"][0])
  88. combined_documents.extend(data["documents"][0])
  89. combined_metadatas.extend(data["metadatas"][0])
  90. # Create a list of tuples (distance, document, metadata)
  91. combined = list(zip(combined_distances, combined_documents, combined_metadatas))
  92. # Sort the list based on distances
  93. combined.sort(key=lambda x: x[0], reverse=reverse)
  94. # We don't have anything :-(
  95. if not combined:
  96. sorted_distances = []
  97. sorted_documents = []
  98. sorted_metadatas = []
  99. else:
  100. # Unzip the sorted list
  101. sorted_distances, sorted_documents, sorted_metadatas = zip(*combined)
  102. # Slicing the lists to include only k elements
  103. sorted_distances = list(sorted_distances)[:k]
  104. sorted_documents = list(sorted_documents)[:k]
  105. sorted_metadatas = list(sorted_metadatas)[:k]
  106. # Create the output dictionary
  107. result = {
  108. "distances": [sorted_distances],
  109. "documents": [sorted_documents],
  110. "metadatas": [sorted_metadatas],
  111. }
  112. return result
  113. def query_collection(
  114. collection_names: list[str],
  115. query: str,
  116. embedding_function,
  117. k: int,
  118. ):
  119. results = []
  120. for collection_name in collection_names:
  121. if collection_name:
  122. try:
  123. result = query_doc(
  124. collection_name=collection_name,
  125. query=query,
  126. k=k,
  127. embedding_function=embedding_function,
  128. )
  129. results.append(result)
  130. except Exception:
  131. pass
  132. else:
  133. pass
  134. return merge_and_sort_query_results(results, k=k)
  135. def query_collection_with_hybrid_search(
  136. collection_names: list[str],
  137. query: str,
  138. embedding_function,
  139. k: int,
  140. reranking_function,
  141. r: float,
  142. ):
  143. results = []
  144. for collection_name in collection_names:
  145. try:
  146. result = query_doc_with_hybrid_search(
  147. collection_name=collection_name,
  148. query=query,
  149. embedding_function=embedding_function,
  150. k=k,
  151. reranking_function=reranking_function,
  152. r=r,
  153. )
  154. results.append(result)
  155. except Exception:
  156. pass
  157. return merge_and_sort_query_results(results, k=k, reverse=True)
  158. def rag_template(template: str, context: str, query: str):
  159. template = template.replace("[context]", context)
  160. template = template.replace("[query]", query)
  161. return template
  162. def get_embedding_function(
  163. embedding_engine,
  164. embedding_model,
  165. embedding_function,
  166. openai_key,
  167. openai_url,
  168. batch_size,
  169. ):
  170. if embedding_engine == "":
  171. return lambda query: embedding_function.encode(query).tolist()
  172. elif embedding_engine in ["ollama", "openai"]:
  173. if embedding_engine == "ollama":
  174. func = lambda query: generate_ollama_embeddings(
  175. GenerateEmbeddingsForm(
  176. **{
  177. "model": embedding_model,
  178. "prompt": query,
  179. }
  180. )
  181. )
  182. elif embedding_engine == "openai":
  183. func = lambda query: generate_openai_embeddings(
  184. model=embedding_model,
  185. text=query,
  186. key=openai_key,
  187. url=openai_url,
  188. )
  189. def generate_multiple(query, f):
  190. if isinstance(query, list):
  191. if embedding_engine == "openai":
  192. embeddings = []
  193. for i in range(0, len(query), batch_size):
  194. embeddings.extend(f(query[i : i + batch_size]))
  195. return embeddings
  196. else:
  197. return [f(q) for q in query]
  198. else:
  199. return f(query)
  200. return lambda query: generate_multiple(query, func)
  201. def get_rag_context(
  202. files,
  203. messages,
  204. embedding_function,
  205. k,
  206. reranking_function,
  207. r,
  208. hybrid_search,
  209. ):
  210. log.debug(f"files: {files} {messages} {embedding_function} {reranking_function}")
  211. query = get_last_user_message(messages)
  212. extracted_collections = []
  213. relevant_contexts = []
  214. for file in files:
  215. context = None
  216. collection_names = (
  217. file["collection_names"]
  218. if file["type"] == "collection"
  219. else [file["collection_name"]] if file["collection_name"] else []
  220. )
  221. collection_names = set(collection_names).difference(extracted_collections)
  222. if not collection_names:
  223. log.debug(f"skipping {file} as it has already been extracted")
  224. continue
  225. try:
  226. if file["type"] == "text":
  227. context = file["content"]
  228. else:
  229. if hybrid_search:
  230. context = query_collection_with_hybrid_search(
  231. collection_names=collection_names,
  232. query=query,
  233. embedding_function=embedding_function,
  234. k=k,
  235. reranking_function=reranking_function,
  236. r=r,
  237. )
  238. else:
  239. context = query_collection(
  240. collection_names=collection_names,
  241. query=query,
  242. embedding_function=embedding_function,
  243. k=k,
  244. )
  245. except Exception as e:
  246. log.exception(e)
  247. context = None
  248. if context:
  249. relevant_contexts.append({**context, "source": file})
  250. extracted_collections.extend(collection_names)
  251. contexts = []
  252. citations = []
  253. for context in relevant_contexts:
  254. try:
  255. if "documents" in context:
  256. contexts.append(
  257. "\n\n".join(
  258. [text for text in context["documents"][0] if text is not None]
  259. )
  260. )
  261. if "metadatas" in context:
  262. citations.append(
  263. {
  264. "source": context["source"],
  265. "document": context["documents"][0],
  266. "metadata": context["metadatas"][0],
  267. }
  268. )
  269. except Exception as e:
  270. log.exception(e)
  271. return contexts, citations
  272. def get_model_path(model: str, update_model: bool = False):
  273. # Construct huggingface_hub kwargs with local_files_only to return the snapshot path
  274. cache_dir = os.getenv("SENTENCE_TRANSFORMERS_HOME")
  275. local_files_only = not update_model
  276. snapshot_kwargs = {
  277. "cache_dir": cache_dir,
  278. "local_files_only": local_files_only,
  279. }
  280. log.debug(f"model: {model}")
  281. log.debug(f"snapshot_kwargs: {snapshot_kwargs}")
  282. # Inspiration from upstream sentence_transformers
  283. if (
  284. os.path.exists(model)
  285. or ("\\" in model or model.count("/") > 1)
  286. and local_files_only
  287. ):
  288. # If fully qualified path exists, return input, else set repo_id
  289. return model
  290. elif "/" not in model:
  291. # Set valid repo_id for model short-name
  292. model = "sentence-transformers" + "/" + model
  293. snapshot_kwargs["repo_id"] = model
  294. # Attempt to query the huggingface_hub library to determine the local path and/or to update
  295. try:
  296. model_repo_path = snapshot_download(**snapshot_kwargs)
  297. log.debug(f"model_repo_path: {model_repo_path}")
  298. return model_repo_path
  299. except Exception as e:
  300. log.exception(f"Cannot determine model snapshot path: {e}")
  301. return model
  302. def generate_openai_embeddings(
  303. model: str,
  304. text: Union[str, list[str]],
  305. key: str,
  306. url: str = "https://api.openai.com/v1",
  307. ):
  308. if isinstance(text, list):
  309. embeddings = generate_openai_batch_embeddings(model, text, key, url)
  310. else:
  311. embeddings = generate_openai_batch_embeddings(model, [text], key, url)
  312. return embeddings[0] if isinstance(text, str) else embeddings
  313. def generate_openai_batch_embeddings(
  314. model: str, texts: list[str], key: str, url: str = "https://api.openai.com/v1"
  315. ) -> Optional[list[list[float]]]:
  316. try:
  317. r = requests.post(
  318. f"{url}/embeddings",
  319. headers={
  320. "Content-Type": "application/json",
  321. "Authorization": f"Bearer {key}",
  322. },
  323. json={"input": texts, "model": model},
  324. )
  325. r.raise_for_status()
  326. data = r.json()
  327. if "data" in data:
  328. return [elem["embedding"] for elem in data["data"]]
  329. else:
  330. raise "Something went wrong :/"
  331. except Exception as e:
  332. print(e)
  333. return None
  334. from typing import Any
  335. from langchain_core.retrievers import BaseRetriever
  336. from langchain_core.callbacks import CallbackManagerForRetrieverRun
  337. class ChromaRetriever(BaseRetriever):
  338. collection: Any
  339. embedding_function: Any
  340. top_n: int
  341. def _get_relevant_documents(
  342. self,
  343. query: str,
  344. *,
  345. run_manager: CallbackManagerForRetrieverRun,
  346. ) -> list[Document]:
  347. query_embeddings = self.embedding_function(query)
  348. results = self.collection.query(
  349. query_embeddings=[query_embeddings],
  350. n_results=self.top_n,
  351. )
  352. ids = results["ids"][0]
  353. metadatas = results["metadatas"][0]
  354. documents = results["documents"][0]
  355. results = []
  356. for idx in range(len(ids)):
  357. results.append(
  358. Document(
  359. metadata=metadatas[idx],
  360. page_content=documents[idx],
  361. )
  362. )
  363. return results
  364. import operator
  365. from typing import Optional, Sequence
  366. from langchain_core.documents import BaseDocumentCompressor, Document
  367. from langchain_core.callbacks import Callbacks
  368. from langchain_core.pydantic_v1 import Extra
  369. class RerankCompressor(BaseDocumentCompressor):
  370. embedding_function: Any
  371. top_n: int
  372. reranking_function: Any
  373. r_score: float
  374. class Config:
  375. extra = Extra.forbid
  376. arbitrary_types_allowed = True
  377. def compress_documents(
  378. self,
  379. documents: Sequence[Document],
  380. query: str,
  381. callbacks: Optional[Callbacks] = None,
  382. ) -> Sequence[Document]:
  383. reranking = self.reranking_function is not None
  384. if reranking:
  385. scores = self.reranking_function.predict(
  386. [(query, doc.page_content) for doc in documents]
  387. )
  388. else:
  389. from sentence_transformers import util
  390. query_embedding = self.embedding_function(query)
  391. document_embedding = self.embedding_function(
  392. [doc.page_content for doc in documents]
  393. )
  394. scores = util.cos_sim(query_embedding, document_embedding)[0]
  395. docs_with_scores = list(zip(documents, scores.tolist()))
  396. if self.r_score:
  397. docs_with_scores = [
  398. (d, s) for d, s in docs_with_scores if s >= self.r_score
  399. ]
  400. result = sorted(docs_with_scores, key=operator.itemgetter(1), reverse=True)
  401. final_results = []
  402. for doc, doc_score in result[: self.top_n]:
  403. metadata = doc.metadata
  404. metadata["score"] = doc_score
  405. doc = Document(
  406. page_content=doc.page_content,
  407. metadata=metadata,
  408. )
  409. final_results.append(doc)
  410. return final_results