opensearch.py 5.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152
  1. from opensearchpy import OpenSearch
  2. from typing import Optional
  3. from open_webui.apps.rag.vector.main import VectorItem, SearchResult, GetResult
  4. from open_webui.config import (
  5. OPENSEARCH_URI,
  6. OPENSEARCH_SSL,
  7. OPENSEARCH_CERT_VERIFY,
  8. OPENSEARCH_USERNAME,
  9. OPENSEARCH_PASSWORD
  10. )
  11. class OpenSearchClient:
  12. def __init__(self):
  13. self.index_prefix = "open_webui"
  14. self.client = OpenSearch(
  15. hosts=[OPENSEARCH_URI],
  16. use_ssl=OPENSEARCH_SSL,
  17. verify_certs=OPENSEARCH_CERT_VERIFY,
  18. http_auth=(OPENSEARCH_USERNAME, OPENSEARCH_PASSWORD),
  19. )
  20. def _result_to_get_result(self, result) -> GetResult:
  21. ids = []
  22. documents = []
  23. metadatas = []
  24. for hit in result['hits']['hits']:
  25. ids.append(hit['_id'])
  26. documents.append(hit['_source'].get("text"))
  27. metadatas.append(hit['_source'].get("metadata"))
  28. return GetResult(ids=ids, documents=documents, metadatas=metadatas)
  29. def _result_to_search_result(self, result) -> SearchResult:
  30. ids = []
  31. distances = []
  32. documents = []
  33. metadatas = []
  34. for hit in result['hits']['hits']:
  35. ids.append(hit['_id'])
  36. distances.append(hit['_score'])
  37. documents.append(hit['_source'].get("text"))
  38. metadatas.append(hit['_source'].get("metadata"))
  39. return SearchResult(ids=ids, distances=distances, documents=documents, metadatas=metadatas)
  40. def _create_index(self, index_name: str, dimension: int):
  41. body = {
  42. "mappings": {
  43. "properties": {
  44. "id": {"type": "keyword"},
  45. "vector": {
  46. "type": "dense_vector",
  47. "dims": dimension, # Adjust based on your vector dimensions
  48. "index": true,
  49. "similarity": "faiss",
  50. "method": {
  51. "name": "hnsw",
  52. "space_type": "ip", # Use inner product to approximate cosine similarity
  53. "engine": "faiss",
  54. "ef_construction": 128,
  55. "m": 16
  56. }
  57. },
  58. "text": {"type": "text"},
  59. "metadata": {"type": "object"}
  60. }
  61. }
  62. }
  63. self.client.indices.create(index=f"{self.index_prefix}_{index_name}", body=body)
  64. def _create_batches(self, items: list[VectorItem], batch_size=100):
  65. for i in range(0, len(items), batch_size):
  66. yield items[i:i + batch_size]
  67. def has_collection(self, index_name: str) -> bool:
  68. # has_collection here means has index.
  69. # We are simply adapting to the norms of the other DBs.
  70. return self.client.indices.exists(index=f"{self.index_prefix}_{index_name}")
  71. def delete_colleciton(self, index_name: str):
  72. # delete_collection here means delete index.
  73. # We are simply adapting to the norms of the other DBs.
  74. self.client.indices.delete(index=f"{self.index_prefix}_{index_name}")
  75. def search(self, index_name: str, vectors: list[list[float]], limit: int) -> Optional[SearchResult]:
  76. query = {
  77. "size": limit,
  78. "_source": ["text", "metadata"],
  79. "query": {
  80. "script_score": {
  81. "query": {"match_all": {}},
  82. "script": {
  83. "source": "cosineSimilarity(params.vector, 'vector') + 1.0",
  84. "params": {"vector": vectors[0]} # Assuming single query vector
  85. }
  86. }
  87. }
  88. }
  89. result = self.client.search(
  90. index=f"{self.index_prefix}_{index_name}",
  91. body=query
  92. )
  93. return self._result_to_search_result(result)
  94. def get_or_create_index(self, index_name: str, dimension: int):
  95. if not self.has_index(index_name):
  96. self._create_index(index_name, dimension)
  97. def get(self, index_name: str) -> Optional[GetResult]:
  98. query = {
  99. "query": {"match_all": {}},
  100. "_source": ["text", "metadata"]
  101. }
  102. result = self.client.search(index=f"{self.index_prefix}_{index_name}", body=query)
  103. return self._result_to_get_result(result)
  104. def insert(self, index_name: str, items: list[VectorItem]):
  105. if not self.has_index(index_name):
  106. self._create_index(index_name, dimension=len(items[0]["vector"]))
  107. for batch in self._create_batches(items):
  108. actions = [
  109. {"index": {"_id": item["id"], "_source": {"vector": item["vector"], "text": item["text"], "metadata": item["metadata"]}}}
  110. for item in batch
  111. ]
  112. self.client.bulk(actions)
  113. def upsert(self, index_name: str, items: list[VectorItem]):
  114. if not self.has_index(index_name):
  115. self._create_index(index_name, dimension=len(items[0]["vector"]))
  116. for batch in self._create_batches(items):
  117. actions = [
  118. {"index": {"_id": item["id"], "_source": {"vector": item["vector"], "text": item["text"], "metadata": item["metadata"]}}}
  119. for item in batch
  120. ]
  121. self.client.bulk(actions)
  122. def delete(self, index_name: str, ids: list[str]):
  123. actions = [{"delete": {"_index": f"{self.index_prefix}_{index_name}", "_id": id}} for id in ids]
  124. self.client.bulk(body=actions)
  125. def reset(self):
  126. indices = self.client.indices.get(index=f"{self.index_prefix}_*")
  127. for index in indices:
  128. self.client.indices.delete(index=index)