utils.py 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575
  1. import logging
  2. import os
  3. import uuid
  4. from typing import Optional, Union
  5. import asyncio
  6. import requests
  7. from huggingface_hub import snapshot_download
  8. from langchain.retrievers import ContextualCompressionRetriever, EnsembleRetriever
  9. from langchain_community.retrievers import BM25Retriever
  10. from langchain_core.documents import Document
  11. from open_webui.config import VECTOR_DB
  12. from open_webui.retrieval.vector.connector import VECTOR_DB_CLIENT
  13. from open_webui.utils.misc import get_last_user_message
  14. from open_webui.models.users import UserModel
  15. from open_webui.env import SRC_LOG_LEVELS, OFFLINE_MODE, ENABLE_FORWARD_USER_INFO_HEADERS
  16. log = logging.getLogger(__name__)
  17. log.setLevel(SRC_LOG_LEVELS["RAG"])
  18. from typing import Any
  19. from langchain_core.callbacks import CallbackManagerForRetrieverRun
  20. from langchain_core.retrievers import BaseRetriever
  21. class VectorSearchRetriever(BaseRetriever):
  22. collection_name: Any
  23. embedding_function: Any
  24. top_k: int
  25. def _get_relevant_documents(
  26. self,
  27. query: str,
  28. *,
  29. run_manager: CallbackManagerForRetrieverRun,
  30. ) -> list[Document]:
  31. result = VECTOR_DB_CLIENT.search(
  32. collection_name=self.collection_name,
  33. vectors=[self.embedding_function(query)],
  34. limit=self.top_k,
  35. )
  36. ids = result.ids[0]
  37. metadatas = result.metadatas[0]
  38. documents = result.documents[0]
  39. results = []
  40. for idx in range(len(ids)):
  41. results.append(
  42. Document(
  43. metadata=metadatas[idx],
  44. page_content=documents[idx],
  45. )
  46. )
  47. return results
  48. def query_doc(
  49. collection_name: str,
  50. query_embedding: list[float],
  51. k: int,
  52. user: UserModel=None
  53. ):
  54. try:
  55. result = VECTOR_DB_CLIENT.search(
  56. collection_name=collection_name,
  57. vectors=[query_embedding],
  58. limit=k,
  59. )
  60. if result:
  61. log.info(f"query_doc:result {result.ids} {result.metadatas}")
  62. return result
  63. except Exception as e:
  64. print(e)
  65. raise e
  66. def query_doc_with_hybrid_search(
  67. collection_name: str,
  68. query: str,
  69. embedding_function,
  70. k: int,
  71. reranking_function,
  72. r: float,
  73. ) -> dict:
  74. try:
  75. result = VECTOR_DB_CLIENT.get(collection_name=collection_name)
  76. bm25_retriever = BM25Retriever.from_texts(
  77. texts=result.documents[0],
  78. metadatas=result.metadatas[0],
  79. )
  80. bm25_retriever.k = k
  81. vector_search_retriever = VectorSearchRetriever(
  82. collection_name=collection_name,
  83. embedding_function=embedding_function,
  84. top_k=k,
  85. )
  86. ensemble_retriever = EnsembleRetriever(
  87. retrievers=[bm25_retriever, vector_search_retriever], weights=[0.5, 0.5]
  88. )
  89. compressor = RerankCompressor(
  90. embedding_function=embedding_function,
  91. top_n=k,
  92. reranking_function=reranking_function,
  93. r_score=r,
  94. )
  95. compression_retriever = ContextualCompressionRetriever(
  96. base_compressor=compressor, base_retriever=ensemble_retriever
  97. )
  98. result = compression_retriever.invoke(query)
  99. result = {
  100. "distances": [[d.metadata.get("score") for d in result]],
  101. "documents": [[d.page_content for d in result]],
  102. "metadatas": [[d.metadata for d in result]],
  103. }
  104. log.info(
  105. "query_doc_with_hybrid_search:result "
  106. + f'{result["metadatas"]} {result["distances"]}'
  107. )
  108. return result
  109. except Exception as e:
  110. raise e
  111. def merge_and_sort_query_results(
  112. query_results: list[dict], k: int, reverse: bool = False
  113. ) -> list[dict]:
  114. # Initialize lists to store combined data
  115. combined_distances = []
  116. combined_documents = []
  117. combined_metadatas = []
  118. for data in query_results:
  119. combined_distances.extend(data["distances"][0])
  120. combined_documents.extend(data["documents"][0])
  121. combined_metadatas.extend(data["metadatas"][0])
  122. # Create a list of tuples (distance, document, metadata)
  123. combined = list(zip(combined_distances, combined_documents, combined_metadatas))
  124. # Sort the list based on distances
  125. combined.sort(key=lambda x: x[0], reverse=reverse)
  126. # We don't have anything :-(
  127. if not combined:
  128. sorted_distances = []
  129. sorted_documents = []
  130. sorted_metadatas = []
  131. else:
  132. # Unzip the sorted list
  133. sorted_distances, sorted_documents, sorted_metadatas = zip(*combined)
  134. # Slicing the lists to include only k elements
  135. sorted_distances = list(sorted_distances)[:k]
  136. sorted_documents = list(sorted_documents)[:k]
  137. sorted_metadatas = list(sorted_metadatas)[:k]
  138. # Create the output dictionary
  139. result = {
  140. "distances": [sorted_distances],
  141. "documents": [sorted_documents],
  142. "metadatas": [sorted_metadatas],
  143. }
  144. return result
  145. def query_collection(
  146. collection_names: list[str],
  147. queries: list[str],
  148. embedding_function,
  149. k: int,
  150. ) -> dict:
  151. results = []
  152. for query in queries:
  153. query_embedding = embedding_function(query)
  154. for collection_name in collection_names:
  155. if collection_name:
  156. try:
  157. result = query_doc(
  158. collection_name=collection_name,
  159. k=k,
  160. query_embedding=query_embedding,
  161. )
  162. if result is not None:
  163. results.append(result.model_dump())
  164. except Exception as e:
  165. log.exception(f"Error when querying the collection: {e}")
  166. else:
  167. pass
  168. if VECTOR_DB == "chroma":
  169. # Chroma uses unconventional cosine similarity, so we don't need to reverse the results
  170. # https://docs.trychroma.com/docs/collections/configure#configuring-chroma-collections
  171. return merge_and_sort_query_results(results, k=k, reverse=False)
  172. else:
  173. return merge_and_sort_query_results(results, k=k, reverse=True)
  174. def query_collection_with_hybrid_search(
  175. collection_names: list[str],
  176. queries: list[str],
  177. embedding_function,
  178. k: int,
  179. reranking_function,
  180. r: float,
  181. ) -> dict:
  182. results = []
  183. error = False
  184. for collection_name in collection_names:
  185. try:
  186. for query in queries:
  187. result = query_doc_with_hybrid_search(
  188. collection_name=collection_name,
  189. query=query,
  190. embedding_function=embedding_function,
  191. k=k,
  192. reranking_function=reranking_function,
  193. r=r,
  194. )
  195. results.append(result)
  196. except Exception as e:
  197. log.exception(
  198. "Error when querying the collection with " f"hybrid_search: {e}"
  199. )
  200. error = True
  201. if error:
  202. raise Exception(
  203. "Hybrid search failed for all collections. Using Non hybrid search as fallback."
  204. )
  205. if VECTOR_DB == "chroma":
  206. # Chroma uses unconventional cosine similarity, so we don't need to reverse the results
  207. # https://docs.trychroma.com/docs/collections/configure#configuring-chroma-collections
  208. return merge_and_sort_query_results(results, k=k, reverse=False)
  209. else:
  210. return merge_and_sort_query_results(results, k=k, reverse=True)
  211. def get_embedding_function(
  212. embedding_engine,
  213. embedding_model,
  214. embedding_function,
  215. url,
  216. key,
  217. embedding_batch_size
  218. ):
  219. if embedding_engine == "":
  220. return lambda query, user=None: embedding_function.encode(query).tolist()
  221. elif embedding_engine in ["ollama", "openai"]:
  222. func = lambda query, user=None: generate_embeddings(
  223. engine=embedding_engine,
  224. model=embedding_model,
  225. text=query,
  226. url=url,
  227. key=key,
  228. user=user
  229. )
  230. def generate_multiple(query, user, func):
  231. if isinstance(query, list):
  232. embeddings = []
  233. for i in range(0, len(query), embedding_batch_size):
  234. embeddings.extend(func(query[i : i + embedding_batch_size], user=user))
  235. return embeddings
  236. else:
  237. return func(query, user)
  238. return lambda query, user=None: generate_multiple(query, user, func)
  239. else:
  240. raise ValueError(f"Unknown embedding engine: {embedding_engine}")
  241. def get_sources_from_files(
  242. files,
  243. queries,
  244. embedding_function,
  245. k,
  246. reranking_function,
  247. r,
  248. hybrid_search,
  249. ):
  250. log.debug(f"files: {files} {queries} {embedding_function} {reranking_function}")
  251. extracted_collections = []
  252. relevant_contexts = []
  253. for file in files:
  254. if file.get("context") == "full":
  255. context = {
  256. "documents": [[file.get("file").get("data", {}).get("content")]],
  257. "metadatas": [[{"file_id": file.get("id"), "name": file.get("name")}]],
  258. }
  259. else:
  260. context = None
  261. collection_names = []
  262. if file.get("type") == "collection":
  263. if file.get("legacy"):
  264. collection_names = file.get("collection_names", [])
  265. else:
  266. collection_names.append(file["id"])
  267. elif file.get("collection_name"):
  268. collection_names.append(file["collection_name"])
  269. elif file.get("id"):
  270. if file.get("legacy"):
  271. collection_names.append(f"{file['id']}")
  272. else:
  273. collection_names.append(f"file-{file['id']}")
  274. collection_names = set(collection_names).difference(extracted_collections)
  275. if not collection_names:
  276. log.debug(f"skipping {file} as it has already been extracted")
  277. continue
  278. try:
  279. context = None
  280. if file.get("type") == "text":
  281. context = file["content"]
  282. else:
  283. if hybrid_search:
  284. try:
  285. context = query_collection_with_hybrid_search(
  286. collection_names=collection_names,
  287. queries=queries,
  288. embedding_function=embedding_function,
  289. k=k,
  290. reranking_function=reranking_function,
  291. r=r,
  292. )
  293. except Exception as e:
  294. log.debug(
  295. "Error when using hybrid search, using"
  296. " non hybrid search as fallback."
  297. )
  298. if (not hybrid_search) or (context is None):
  299. context = query_collection(
  300. collection_names=collection_names,
  301. queries=queries,
  302. embedding_function=embedding_function,
  303. k=k,
  304. )
  305. except Exception as e:
  306. log.exception(e)
  307. extracted_collections.extend(collection_names)
  308. if context:
  309. if "data" in file:
  310. del file["data"]
  311. relevant_contexts.append({**context, "file": file})
  312. sources = []
  313. for context in relevant_contexts:
  314. try:
  315. if "documents" in context:
  316. if "metadatas" in context:
  317. source = {
  318. "source": context["file"],
  319. "document": context["documents"][0],
  320. "metadata": context["metadatas"][0],
  321. }
  322. if "distances" in context and context["distances"]:
  323. source["distances"] = context["distances"][0]
  324. sources.append(source)
  325. except Exception as e:
  326. log.exception(e)
  327. return sources
  328. def get_model_path(model: str, update_model: bool = False):
  329. # Construct huggingface_hub kwargs with local_files_only to return the snapshot path
  330. cache_dir = os.getenv("SENTENCE_TRANSFORMERS_HOME")
  331. local_files_only = not update_model
  332. if OFFLINE_MODE:
  333. local_files_only = True
  334. snapshot_kwargs = {
  335. "cache_dir": cache_dir,
  336. "local_files_only": local_files_only,
  337. }
  338. log.debug(f"model: {model}")
  339. log.debug(f"snapshot_kwargs: {snapshot_kwargs}")
  340. # Inspiration from upstream sentence_transformers
  341. if (
  342. os.path.exists(model)
  343. or ("\\" in model or model.count("/") > 1)
  344. and local_files_only
  345. ):
  346. # If fully qualified path exists, return input, else set repo_id
  347. return model
  348. elif "/" not in model:
  349. # Set valid repo_id for model short-name
  350. model = "sentence-transformers" + "/" + model
  351. snapshot_kwargs["repo_id"] = model
  352. # Attempt to query the huggingface_hub library to determine the local path and/or to update
  353. try:
  354. model_repo_path = snapshot_download(**snapshot_kwargs)
  355. log.debug(f"model_repo_path: {model_repo_path}")
  356. return model_repo_path
  357. except Exception as e:
  358. log.exception(f"Cannot determine model snapshot path: {e}")
  359. return model
  360. def generate_openai_batch_embeddings(
  361. model: str, texts: list[str], url: str = "https://api.openai.com/v1", key: str = "", user: UserModel = None
  362. ) -> Optional[list[list[float]]]:
  363. try:
  364. r = requests.post(
  365. f"{url}/embeddings",
  366. headers={
  367. "Content-Type": "application/json",
  368. "Authorization": f"Bearer {key}",
  369. **(
  370. {
  371. "X-OpenWebUI-User-Name": user.name,
  372. "X-OpenWebUI-User-Id": user.id,
  373. "X-OpenWebUI-User-Email": user.email,
  374. "X-OpenWebUI-User-Role": user.role,
  375. }
  376. if ENABLE_FORWARD_USER_INFO_HEADERS and user
  377. else {}
  378. ),
  379. },
  380. json={"input": texts, "model": model},
  381. )
  382. r.raise_for_status()
  383. data = r.json()
  384. if "data" in data:
  385. return [elem["embedding"] for elem in data["data"]]
  386. else:
  387. raise "Something went wrong :/"
  388. except Exception as e:
  389. print(e)
  390. return None
  391. def generate_ollama_batch_embeddings(
  392. model: str, texts: list[str], url: str, key: str = "", user: UserModel = None
  393. ) -> Optional[list[list[float]]]:
  394. try:
  395. r = requests.post(
  396. f"{url}/api/embed",
  397. headers={
  398. "Content-Type": "application/json",
  399. "Authorization": f"Bearer {key}",
  400. **(
  401. {
  402. "X-OpenWebUI-User-Name": user.name,
  403. "X-OpenWebUI-User-Id": user.id,
  404. "X-OpenWebUI-User-Email": user.email,
  405. "X-OpenWebUI-User-Role": user.role,
  406. }
  407. if ENABLE_FORWARD_USER_INFO_HEADERS
  408. else {}
  409. ),
  410. },
  411. json={"input": texts, "model": model},
  412. )
  413. r.raise_for_status()
  414. data = r.json()
  415. if "embeddings" in data:
  416. return data["embeddings"]
  417. else:
  418. raise "Something went wrong :/"
  419. except Exception as e:
  420. print(e)
  421. return None
  422. def generate_embeddings(engine: str, model: str, text: Union[str, list[str]], **kwargs):
  423. url = kwargs.get("url", "")
  424. key = kwargs.get("key", "")
  425. user = kwargs.get("user")
  426. if engine == "ollama":
  427. if isinstance(text, list):
  428. embeddings = generate_ollama_batch_embeddings(
  429. **{"model": model, "texts": text, "url": url, "key": key, "user": user}
  430. )
  431. else:
  432. embeddings = generate_ollama_batch_embeddings(
  433. **{"model": model, "texts": [text], "url": url, "key": key, "user": user}
  434. )
  435. return embeddings[0] if isinstance(text, str) else embeddings
  436. elif engine == "openai":
  437. if isinstance(text, list):
  438. embeddings = generate_openai_batch_embeddings(model, text, url, key, user)
  439. else:
  440. embeddings = generate_openai_batch_embeddings(model, [text], url, key, user)
  441. return embeddings[0] if isinstance(text, str) else embeddings
  442. import operator
  443. from typing import Optional, Sequence
  444. from langchain_core.callbacks import Callbacks
  445. from langchain_core.documents import BaseDocumentCompressor, Document
  446. class RerankCompressor(BaseDocumentCompressor):
  447. embedding_function: Any
  448. top_n: int
  449. reranking_function: Any
  450. r_score: float
  451. class Config:
  452. extra = "forbid"
  453. arbitrary_types_allowed = True
  454. def compress_documents(
  455. self,
  456. documents: Sequence[Document],
  457. query: str,
  458. callbacks: Optional[Callbacks] = None,
  459. ) -> Sequence[Document]:
  460. reranking = self.reranking_function is not None
  461. if reranking:
  462. scores = self.reranking_function.predict(
  463. [(query, doc.page_content) for doc in documents]
  464. )
  465. else:
  466. from sentence_transformers import util
  467. query_embedding = self.embedding_function(query)
  468. document_embedding = self.embedding_function(
  469. [doc.page_content for doc in documents]
  470. )
  471. scores = util.cos_sim(query_embedding, document_embedding)[0]
  472. docs_with_scores = list(zip(documents, scores.tolist()))
  473. if self.r_score:
  474. docs_with_scores = [
  475. (d, s) for d, s in docs_with_scores if s >= self.r_score
  476. ]
  477. result = sorted(docs_with_scores, key=operator.itemgetter(1), reverse=True)
  478. final_results = []
  479. for doc, doc_score in result[: self.top_n]:
  480. metadata = doc.metadata
  481. metadata["score"] = doc_score
  482. doc = Document(
  483. page_content=doc.page_content,
  484. metadata=metadata,
  485. )
  486. final_results.append(doc)
  487. return final_results