main.py 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770
  1. from fastapi import (
  2. FastAPI,
  3. Depends,
  4. HTTPException,
  5. status,
  6. UploadFile,
  7. File,
  8. Form,
  9. )
  10. from fastapi.middleware.cors import CORSMiddleware
  11. import os, shutil, logging, re
  12. from pathlib import Path
  13. from typing import List
  14. from chromadb.utils import embedding_functions
  15. from chromadb.utils.batch_utils import create_batches
  16. from langchain_community.document_loaders import (
  17. WebBaseLoader,
  18. TextLoader,
  19. PyPDFLoader,
  20. CSVLoader,
  21. BSHTMLLoader,
  22. Docx2txtLoader,
  23. UnstructuredEPubLoader,
  24. UnstructuredWordDocumentLoader,
  25. UnstructuredMarkdownLoader,
  26. UnstructuredXMLLoader,
  27. UnstructuredRSTLoader,
  28. UnstructuredExcelLoader,
  29. )
  30. from langchain.text_splitter import RecursiveCharacterTextSplitter
  31. from pydantic import BaseModel
  32. from typing import Optional
  33. import mimetypes
  34. import uuid
  35. import json
  36. from apps.ollama.main import generate_ollama_embeddings, GenerateEmbeddingsForm
  37. from apps.web.models.documents import (
  38. Documents,
  39. DocumentForm,
  40. DocumentResponse,
  41. )
  42. from apps.rag.utils import (
  43. query_doc,
  44. query_embeddings_doc,
  45. query_collection,
  46. query_embeddings_collection,
  47. get_embedding_model_path,
  48. generate_openai_embeddings,
  49. )
  50. from utils.misc import (
  51. calculate_sha256,
  52. calculate_sha256_string,
  53. sanitize_filename,
  54. extract_folders_after_data_docs,
  55. )
  56. from utils.utils import get_current_user, get_admin_user
  57. from config import (
  58. SRC_LOG_LEVELS,
  59. UPLOAD_DIR,
  60. DOCS_DIR,
  61. RAG_EMBEDDING_ENGINE,
  62. RAG_EMBEDDING_MODEL,
  63. RAG_EMBEDDING_MODEL_AUTO_UPDATE,
  64. RAG_OPENAI_API_BASE_URL,
  65. RAG_OPENAI_API_KEY,
  66. DEVICE_TYPE,
  67. CHROMA_CLIENT,
  68. CHUNK_SIZE,
  69. CHUNK_OVERLAP,
  70. RAG_TEMPLATE,
  71. )
  72. from constants import ERROR_MESSAGES
  73. log = logging.getLogger(__name__)
  74. log.setLevel(SRC_LOG_LEVELS["RAG"])
  75. app = FastAPI()
  76. app.state.TOP_K = 4
  77. app.state.CHUNK_SIZE = CHUNK_SIZE
  78. app.state.CHUNK_OVERLAP = CHUNK_OVERLAP
  79. app.state.RAG_EMBEDDING_ENGINE = RAG_EMBEDDING_ENGINE
  80. app.state.RAG_EMBEDDING_MODEL = RAG_EMBEDDING_MODEL
  81. app.state.RAG_TEMPLATE = RAG_TEMPLATE
  82. app.state.RAG_OPENAI_API_BASE_URL = RAG_OPENAI_API_BASE_URL
  83. app.state.RAG_OPENAI_API_KEY = RAG_OPENAI_API_KEY
  84. app.state.PDF_EXTRACT_IMAGES = False
  85. app.state.sentence_transformer_ef = (
  86. embedding_functions.SentenceTransformerEmbeddingFunction(
  87. model_name=get_embedding_model_path(
  88. app.state.RAG_EMBEDDING_MODEL, RAG_EMBEDDING_MODEL_AUTO_UPDATE
  89. ),
  90. device=DEVICE_TYPE,
  91. )
  92. )
  93. origins = ["*"]
  94. app.add_middleware(
  95. CORSMiddleware,
  96. allow_origins=origins,
  97. allow_credentials=True,
  98. allow_methods=["*"],
  99. allow_headers=["*"],
  100. )
  101. class CollectionNameForm(BaseModel):
  102. collection_name: Optional[str] = "test"
  103. class StoreWebForm(CollectionNameForm):
  104. url: str
  105. @app.get("/")
  106. async def get_status():
  107. return {
  108. "status": True,
  109. "chunk_size": app.state.CHUNK_SIZE,
  110. "chunk_overlap": app.state.CHUNK_OVERLAP,
  111. "template": app.state.RAG_TEMPLATE,
  112. "embedding_engine": app.state.RAG_EMBEDDING_ENGINE,
  113. "embedding_model": app.state.RAG_EMBEDDING_MODEL,
  114. }
  115. @app.get("/embedding")
  116. async def get_embedding_config(user=Depends(get_admin_user)):
  117. return {
  118. "status": True,
  119. "embedding_engine": app.state.RAG_EMBEDDING_ENGINE,
  120. "embedding_model": app.state.RAG_EMBEDDING_MODEL,
  121. "openai_config": {
  122. "url": app.state.RAG_OPENAI_API_BASE_URL,
  123. "key": app.state.RAG_OPENAI_API_KEY,
  124. },
  125. }
  126. class OpenAIConfigForm(BaseModel):
  127. url: str
  128. key: str
  129. class EmbeddingModelUpdateForm(BaseModel):
  130. openai_config: Optional[OpenAIConfigForm] = None
  131. embedding_engine: str
  132. embedding_model: str
  133. @app.post("/embedding/update")
  134. async def update_embedding_config(
  135. form_data: EmbeddingModelUpdateForm, user=Depends(get_admin_user)
  136. ):
  137. log.info(
  138. f"Updating embedding model: {app.state.RAG_EMBEDDING_MODEL} to {form_data.embedding_model}"
  139. )
  140. try:
  141. app.state.RAG_EMBEDDING_ENGINE = form_data.embedding_engine
  142. if app.state.RAG_EMBEDDING_ENGINE in ["ollama", "openai"]:
  143. app.state.RAG_EMBEDDING_MODEL = form_data.embedding_model
  144. app.state.sentence_transformer_ef = None
  145. if form_data.openai_config != None:
  146. app.state.RAG_OPENAI_API_BASE_URL = form_data.openai_config.url
  147. app.state.RAG_OPENAI_API_KEY = form_data.openai_config.key
  148. else:
  149. sentence_transformer_ef = (
  150. embedding_functions.SentenceTransformerEmbeddingFunction(
  151. model_name=get_embedding_model_path(
  152. form_data.embedding_model, True
  153. ),
  154. device=DEVICE_TYPE,
  155. )
  156. )
  157. app.state.RAG_EMBEDDING_MODEL = form_data.embedding_model
  158. app.state.sentence_transformer_ef = sentence_transformer_ef
  159. return {
  160. "status": True,
  161. "embedding_engine": app.state.RAG_EMBEDDING_ENGINE,
  162. "embedding_model": app.state.RAG_EMBEDDING_MODEL,
  163. "openai_config": {
  164. "url": app.state.RAG_OPENAI_API_BASE_URL,
  165. "key": app.state.RAG_OPENAI_API_KEY,
  166. },
  167. }
  168. except Exception as e:
  169. log.exception(f"Problem updating embedding model: {e}")
  170. raise HTTPException(
  171. status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
  172. detail=ERROR_MESSAGES.DEFAULT(e),
  173. )
  174. @app.get("/config")
  175. async def get_rag_config(user=Depends(get_admin_user)):
  176. return {
  177. "status": True,
  178. "pdf_extract_images": app.state.PDF_EXTRACT_IMAGES,
  179. "chunk": {
  180. "chunk_size": app.state.CHUNK_SIZE,
  181. "chunk_overlap": app.state.CHUNK_OVERLAP,
  182. },
  183. }
  184. class ChunkParamUpdateForm(BaseModel):
  185. chunk_size: int
  186. chunk_overlap: int
  187. class ConfigUpdateForm(BaseModel):
  188. pdf_extract_images: bool
  189. chunk: ChunkParamUpdateForm
  190. @app.post("/config/update")
  191. async def update_rag_config(form_data: ConfigUpdateForm, user=Depends(get_admin_user)):
  192. app.state.PDF_EXTRACT_IMAGES = form_data.pdf_extract_images
  193. app.state.CHUNK_SIZE = form_data.chunk.chunk_size
  194. app.state.CHUNK_OVERLAP = form_data.chunk.chunk_overlap
  195. return {
  196. "status": True,
  197. "pdf_extract_images": app.state.PDF_EXTRACT_IMAGES,
  198. "chunk": {
  199. "chunk_size": app.state.CHUNK_SIZE,
  200. "chunk_overlap": app.state.CHUNK_OVERLAP,
  201. },
  202. }
  203. @app.get("/template")
  204. async def get_rag_template(user=Depends(get_current_user)):
  205. return {
  206. "status": True,
  207. "template": app.state.RAG_TEMPLATE,
  208. }
  209. @app.get("/query/settings")
  210. async def get_query_settings(user=Depends(get_admin_user)):
  211. return {
  212. "status": True,
  213. "template": app.state.RAG_TEMPLATE,
  214. "k": app.state.TOP_K,
  215. }
  216. class QuerySettingsForm(BaseModel):
  217. k: Optional[int] = None
  218. template: Optional[str] = None
  219. @app.post("/query/settings/update")
  220. async def update_query_settings(
  221. form_data: QuerySettingsForm, user=Depends(get_admin_user)
  222. ):
  223. app.state.RAG_TEMPLATE = form_data.template if form_data.template else RAG_TEMPLATE
  224. app.state.TOP_K = form_data.k if form_data.k else 4
  225. return {"status": True, "template": app.state.RAG_TEMPLATE}
  226. class QueryDocForm(BaseModel):
  227. collection_name: str
  228. query: str
  229. k: Optional[int] = None
  230. @app.post("/query/doc")
  231. def query_doc_handler(
  232. form_data: QueryDocForm,
  233. user=Depends(get_current_user),
  234. ):
  235. try:
  236. if app.state.RAG_EMBEDDING_ENGINE == "":
  237. return query_doc(
  238. collection_name=form_data.collection_name,
  239. query=form_data.query,
  240. k=form_data.k if form_data.k else app.state.TOP_K,
  241. embedding_function=app.state.sentence_transformer_ef,
  242. )
  243. else:
  244. if app.state.RAG_EMBEDDING_ENGINE == "ollama":
  245. query_embeddings = generate_ollama_embeddings(
  246. GenerateEmbeddingsForm(
  247. **{
  248. "model": app.state.RAG_EMBEDDING_MODEL,
  249. "prompt": form_data.query,
  250. }
  251. )
  252. )
  253. elif app.state.RAG_EMBEDDING_ENGINE == "openai":
  254. query_embeddings = generate_openai_embeddings(
  255. model=app.state.RAG_EMBEDDING_MODEL,
  256. text=form_data.query,
  257. key=app.state.RAG_OPENAI_API_KEY,
  258. url=app.state.RAG_OPENAI_API_BASE_URL,
  259. )
  260. return query_embeddings_doc(
  261. collection_name=form_data.collection_name,
  262. query_embeddings=query_embeddings,
  263. k=form_data.k if form_data.k else app.state.TOP_K,
  264. )
  265. except Exception as e:
  266. log.exception(e)
  267. raise HTTPException(
  268. status_code=status.HTTP_400_BAD_REQUEST,
  269. detail=ERROR_MESSAGES.DEFAULT(e),
  270. )
  271. class QueryCollectionsForm(BaseModel):
  272. collection_names: List[str]
  273. query: str
  274. k: Optional[int] = None
  275. @app.post("/query/collection")
  276. def query_collection_handler(
  277. form_data: QueryCollectionsForm,
  278. user=Depends(get_current_user),
  279. ):
  280. try:
  281. if app.state.RAG_EMBEDDING_ENGINE == "":
  282. return query_collection(
  283. collection_names=form_data.collection_names,
  284. query=form_data.query,
  285. k=form_data.k if form_data.k else app.state.TOP_K,
  286. embedding_function=app.state.sentence_transformer_ef,
  287. )
  288. else:
  289. if app.state.RAG_EMBEDDING_ENGINE == "ollama":
  290. query_embeddings = generate_ollama_embeddings(
  291. GenerateEmbeddingsForm(
  292. **{
  293. "model": app.state.RAG_EMBEDDING_MODEL,
  294. "prompt": form_data.query,
  295. }
  296. )
  297. )
  298. elif app.state.RAG_EMBEDDING_ENGINE == "openai":
  299. query_embeddings = generate_openai_embeddings(
  300. model=app.state.RAG_EMBEDDING_MODEL,
  301. text=form_data.query,
  302. key=app.state.RAG_OPENAI_API_KEY,
  303. url=app.state.RAG_OPENAI_API_BASE_URL,
  304. )
  305. return query_embeddings_collection(
  306. collection_names=form_data.collection_names,
  307. query_embeddings=query_embeddings,
  308. k=form_data.k if form_data.k else app.state.TOP_K,
  309. )
  310. except Exception as e:
  311. log.exception(e)
  312. raise HTTPException(
  313. status_code=status.HTTP_400_BAD_REQUEST,
  314. detail=ERROR_MESSAGES.DEFAULT(e),
  315. )
  316. @app.post("/web")
  317. def store_web(form_data: StoreWebForm, user=Depends(get_current_user)):
  318. # "https://www.gutenberg.org/files/1727/1727-h/1727-h.htm"
  319. try:
  320. loader = WebBaseLoader(form_data.url)
  321. data = loader.load()
  322. collection_name = form_data.collection_name
  323. if collection_name == "":
  324. collection_name = calculate_sha256_string(form_data.url)[:63]
  325. store_data_in_vector_db(data, collection_name, overwrite=True)
  326. return {
  327. "status": True,
  328. "collection_name": collection_name,
  329. "filename": form_data.url,
  330. }
  331. except Exception as e:
  332. log.exception(e)
  333. raise HTTPException(
  334. status_code=status.HTTP_400_BAD_REQUEST,
  335. detail=ERROR_MESSAGES.DEFAULT(e),
  336. )
  337. def store_data_in_vector_db(data, collection_name, overwrite: bool = False) -> bool:
  338. text_splitter = RecursiveCharacterTextSplitter(
  339. chunk_size=app.state.CHUNK_SIZE,
  340. chunk_overlap=app.state.CHUNK_OVERLAP,
  341. add_start_index=True,
  342. )
  343. docs = text_splitter.split_documents(data)
  344. if len(docs) > 0:
  345. log.info(f"store_data_in_vector_db {docs}")
  346. return store_docs_in_vector_db(docs, collection_name, overwrite), None
  347. else:
  348. raise ValueError(ERROR_MESSAGES.EMPTY_CONTENT)
  349. def store_text_in_vector_db(
  350. text, metadata, collection_name, overwrite: bool = False
  351. ) -> bool:
  352. text_splitter = RecursiveCharacterTextSplitter(
  353. chunk_size=app.state.CHUNK_SIZE,
  354. chunk_overlap=app.state.CHUNK_OVERLAP,
  355. add_start_index=True,
  356. )
  357. docs = text_splitter.create_documents([text], metadatas=[metadata])
  358. return store_docs_in_vector_db(docs, collection_name, overwrite)
  359. def store_docs_in_vector_db(docs, collection_name, overwrite: bool = False) -> bool:
  360. log.info(f"store_docs_in_vector_db {docs} {collection_name}")
  361. texts = [doc.page_content for doc in docs]
  362. metadatas = [doc.metadata for doc in docs]
  363. try:
  364. if overwrite:
  365. for collection in CHROMA_CLIENT.list_collections():
  366. if collection_name == collection.name:
  367. log.info(f"deleting existing collection {collection_name}")
  368. CHROMA_CLIENT.delete_collection(name=collection_name)
  369. if app.state.RAG_EMBEDDING_ENGINE == "":
  370. collection = CHROMA_CLIENT.create_collection(
  371. name=collection_name,
  372. embedding_function=app.state.sentence_transformer_ef,
  373. )
  374. for batch in create_batches(
  375. api=CHROMA_CLIENT,
  376. ids=[str(uuid.uuid1()) for _ in texts],
  377. metadatas=metadatas,
  378. documents=texts,
  379. ):
  380. collection.add(*batch)
  381. else:
  382. collection = CHROMA_CLIENT.create_collection(name=collection_name)
  383. if app.state.RAG_EMBEDDING_ENGINE == "ollama":
  384. embeddings = [
  385. generate_ollama_embeddings(
  386. GenerateEmbeddingsForm(
  387. **{"model": app.state.RAG_EMBEDDING_MODEL, "prompt": text}
  388. )
  389. )
  390. for text in texts
  391. ]
  392. elif app.state.RAG_EMBEDDING_ENGINE == "openai":
  393. embeddings = [
  394. generate_openai_embeddings(
  395. model=app.state.RAG_EMBEDDING_MODEL,
  396. text=text,
  397. key=app.state.RAG_OPENAI_API_KEY,
  398. url=app.state.RAG_OPENAI_API_BASE_URL,
  399. )
  400. for text in texts
  401. ]
  402. for batch in create_batches(
  403. api=CHROMA_CLIENT,
  404. ids=[str(uuid.uuid1()) for _ in texts],
  405. metadatas=metadatas,
  406. embeddings=embeddings,
  407. documents=texts,
  408. ):
  409. collection.add(*batch)
  410. return True
  411. except Exception as e:
  412. log.exception(e)
  413. if e.__class__.__name__ == "UniqueConstraintError":
  414. return True
  415. return False
  416. def get_loader(filename: str, file_content_type: str, file_path: str):
  417. file_ext = filename.split(".")[-1].lower()
  418. known_type = True
  419. known_source_ext = [
  420. "go",
  421. "py",
  422. "java",
  423. "sh",
  424. "bat",
  425. "ps1",
  426. "cmd",
  427. "js",
  428. "ts",
  429. "css",
  430. "cpp",
  431. "hpp",
  432. "h",
  433. "c",
  434. "cs",
  435. "sql",
  436. "log",
  437. "ini",
  438. "pl",
  439. "pm",
  440. "r",
  441. "dart",
  442. "dockerfile",
  443. "env",
  444. "php",
  445. "hs",
  446. "hsc",
  447. "lua",
  448. "nginxconf",
  449. "conf",
  450. "m",
  451. "mm",
  452. "plsql",
  453. "perl",
  454. "rb",
  455. "rs",
  456. "db2",
  457. "scala",
  458. "bash",
  459. "swift",
  460. "vue",
  461. "svelte",
  462. ]
  463. if file_ext == "pdf":
  464. loader = PyPDFLoader(file_path, extract_images=app.state.PDF_EXTRACT_IMAGES)
  465. elif file_ext == "csv":
  466. loader = CSVLoader(file_path)
  467. elif file_ext == "rst":
  468. loader = UnstructuredRSTLoader(file_path, mode="elements")
  469. elif file_ext == "xml":
  470. loader = UnstructuredXMLLoader(file_path)
  471. elif file_ext in ["htm", "html"]:
  472. loader = BSHTMLLoader(file_path, open_encoding="unicode_escape")
  473. elif file_ext == "md":
  474. loader = UnstructuredMarkdownLoader(file_path)
  475. elif file_content_type == "application/epub+zip":
  476. loader = UnstructuredEPubLoader(file_path)
  477. elif (
  478. file_content_type
  479. == "application/vnd.openxmlformats-officedocument.wordprocessingml.document"
  480. or file_ext in ["doc", "docx"]
  481. ):
  482. loader = Docx2txtLoader(file_path)
  483. elif file_content_type in [
  484. "application/vnd.ms-excel",
  485. "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
  486. ] or file_ext in ["xls", "xlsx"]:
  487. loader = UnstructuredExcelLoader(file_path)
  488. elif file_ext in known_source_ext or (
  489. file_content_type and file_content_type.find("text/") >= 0
  490. ):
  491. loader = TextLoader(file_path, autodetect_encoding=True)
  492. else:
  493. loader = TextLoader(file_path, autodetect_encoding=True)
  494. known_type = False
  495. return loader, known_type
  496. @app.post("/doc")
  497. def store_doc(
  498. collection_name: Optional[str] = Form(None),
  499. file: UploadFile = File(...),
  500. user=Depends(get_current_user),
  501. ):
  502. # "https://www.gutenberg.org/files/1727/1727-h/1727-h.htm"
  503. log.info(f"file.content_type: {file.content_type}")
  504. try:
  505. unsanitized_filename = file.filename
  506. filename = os.path.basename(unsanitized_filename)
  507. file_path = f"{UPLOAD_DIR}/{filename}"
  508. contents = file.file.read()
  509. with open(file_path, "wb") as f:
  510. f.write(contents)
  511. f.close()
  512. f = open(file_path, "rb")
  513. if collection_name == None:
  514. collection_name = calculate_sha256(f)[:63]
  515. f.close()
  516. loader, known_type = get_loader(filename, file.content_type, file_path)
  517. data = loader.load()
  518. try:
  519. result = store_data_in_vector_db(data, collection_name)
  520. if result:
  521. return {
  522. "status": True,
  523. "collection_name": collection_name,
  524. "filename": filename,
  525. "known_type": known_type,
  526. }
  527. except Exception as e:
  528. raise HTTPException(
  529. status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
  530. detail=e,
  531. )
  532. except Exception as e:
  533. log.exception(e)
  534. if "No pandoc was found" in str(e):
  535. raise HTTPException(
  536. status_code=status.HTTP_400_BAD_REQUEST,
  537. detail=ERROR_MESSAGES.PANDOC_NOT_INSTALLED,
  538. )
  539. else:
  540. raise HTTPException(
  541. status_code=status.HTTP_400_BAD_REQUEST,
  542. detail=ERROR_MESSAGES.DEFAULT(e),
  543. )
  544. class TextRAGForm(BaseModel):
  545. name: str
  546. content: str
  547. collection_name: Optional[str] = None
  548. @app.post("/text")
  549. def store_text(
  550. form_data: TextRAGForm,
  551. user=Depends(get_current_user),
  552. ):
  553. collection_name = form_data.collection_name
  554. if collection_name == None:
  555. collection_name = calculate_sha256_string(form_data.content)
  556. result = store_text_in_vector_db(
  557. form_data.content,
  558. metadata={"name": form_data.name, "created_by": user.id},
  559. collection_name=collection_name,
  560. )
  561. if result:
  562. return {"status": True, "collection_name": collection_name}
  563. else:
  564. raise HTTPException(
  565. status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
  566. detail=ERROR_MESSAGES.DEFAULT(),
  567. )
  568. @app.get("/scan")
  569. def scan_docs_dir(user=Depends(get_admin_user)):
  570. for path in Path(DOCS_DIR).rglob("./**/*"):
  571. try:
  572. if path.is_file() and not path.name.startswith("."):
  573. tags = extract_folders_after_data_docs(path)
  574. filename = path.name
  575. file_content_type = mimetypes.guess_type(path)
  576. f = open(path, "rb")
  577. collection_name = calculate_sha256(f)[:63]
  578. f.close()
  579. loader, known_type = get_loader(
  580. filename, file_content_type[0], str(path)
  581. )
  582. data = loader.load()
  583. try:
  584. result = store_data_in_vector_db(data, collection_name)
  585. if result:
  586. sanitized_filename = sanitize_filename(filename)
  587. doc = Documents.get_doc_by_name(sanitized_filename)
  588. if doc == None:
  589. doc = Documents.insert_new_doc(
  590. user.id,
  591. DocumentForm(
  592. **{
  593. "name": sanitized_filename,
  594. "title": filename,
  595. "collection_name": collection_name,
  596. "filename": filename,
  597. "content": (
  598. json.dumps(
  599. {
  600. "tags": list(
  601. map(
  602. lambda name: {"name": name},
  603. tags,
  604. )
  605. )
  606. }
  607. )
  608. if len(tags)
  609. else "{}"
  610. ),
  611. }
  612. ),
  613. )
  614. except Exception as e:
  615. log.exception(e)
  616. pass
  617. except Exception as e:
  618. log.exception(e)
  619. return True
  620. @app.get("/reset/db")
  621. def reset_vector_db(user=Depends(get_admin_user)):
  622. CHROMA_CLIENT.reset()
  623. @app.get("/reset")
  624. def reset(user=Depends(get_admin_user)) -> bool:
  625. folder = f"{UPLOAD_DIR}"
  626. for filename in os.listdir(folder):
  627. file_path = os.path.join(folder, filename)
  628. try:
  629. if os.path.isfile(file_path) or os.path.islink(file_path):
  630. os.unlink(file_path)
  631. elif os.path.isdir(file_path):
  632. shutil.rmtree(file_path)
  633. except Exception as e:
  634. log.error("Failed to delete %s. Reason: %s" % (file_path, e))
  635. try:
  636. CHROMA_CLIENT.reset()
  637. except Exception as e:
  638. log.exception(e)
  639. return True