elasticsearch.py 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316
  1. from elasticsearch import Elasticsearch, BadRequestError
  2. from typing import Optional
  3. import ssl
  4. from elasticsearch.helpers import bulk,scan
  5. from open_webui.retrieval.vector.main import VectorItem, SearchResult, GetResult
  6. from open_webui.config import (
  7. ELASTICSEARCH_URL,
  8. ELASTICSEARCH_CA_CERTS,
  9. ELASTICSEARCH_API_KEY,
  10. ELASTICSEARCH_USERNAME,
  11. ELASTICSEARCH_PASSWORD,
  12. ELASTICSEARCH_CLOUD_ID,
  13. ELASTICSEARCH_INDEX_PREFIX,
  14. SSL_ASSERT_FINGERPRINT,
  15. )
  16. class ElasticsearchClient:
  17. """
  18. Important:
  19. in order to reduce the number of indexes and since the embedding vector length is fixed, we avoid creating
  20. an index for each file but store it as a text field, while seperating to different index
  21. baesd on the embedding length.
  22. """
  23. def __init__(self):
  24. self.index_prefix = ELASTICSEARCH_INDEX_PREFIX
  25. self.client = Elasticsearch(
  26. hosts=[ELASTICSEARCH_URL],
  27. ca_certs=ELASTICSEARCH_CA_CERTS,
  28. api_key=ELASTICSEARCH_API_KEY,
  29. cloud_id=ELASTICSEARCH_CLOUD_ID,
  30. basic_auth=(ELASTICSEARCH_USERNAME,ELASTICSEARCH_PASSWORD) if ELASTICSEARCH_USERNAME and ELASTICSEARCH_PASSWORD else None,
  31. ssl_assert_fingerprint=SSL_ASSERT_FINGERPRINT
  32. )
  33. #Status: works
  34. def _get_index_name(self,dimension:int)->str:
  35. return f"{self.index_prefix}_d{str(dimension)}"
  36. #Status: works
  37. def _scan_result_to_get_result(self, result) -> GetResult:
  38. if not result:
  39. return None
  40. ids = []
  41. documents = []
  42. metadatas = []
  43. for hit in result:
  44. ids.append(hit["_id"])
  45. documents.append(hit["_source"].get("text"))
  46. metadatas.append(hit["_source"].get("metadata"))
  47. return GetResult(ids=[ids], documents=[documents], metadatas=[metadatas])
  48. #Status: works
  49. def _result_to_get_result(self, result) -> GetResult:
  50. if not result["hits"]["hits"]:
  51. return None
  52. ids = []
  53. documents = []
  54. metadatas = []
  55. for hit in result["hits"]["hits"]:
  56. ids.append(hit["_id"])
  57. documents.append(hit["_source"].get("text"))
  58. metadatas.append(hit["_source"].get("metadata"))
  59. return GetResult(ids=[ids], documents=[documents], metadatas=[metadatas])
  60. #Status: works
  61. def _result_to_search_result(self, result) -> SearchResult:
  62. ids = []
  63. distances = []
  64. documents = []
  65. metadatas = []
  66. for hit in result["hits"]["hits"]:
  67. ids.append(hit["_id"])
  68. distances.append(hit["_score"])
  69. documents.append(hit["_source"].get("text"))
  70. metadatas.append(hit["_source"].get("metadata"))
  71. return SearchResult(
  72. ids=[ids], distances=[distances], documents=[documents], metadatas=[metadatas]
  73. )
  74. #Status: works
  75. def _create_index(self, dimension: int):
  76. body = {
  77. "mappings": {
  78. "dynamic_templates": [
  79. {
  80. "strings": {
  81. "match_mapping_type": "string",
  82. "mapping": {
  83. "type": "keyword"
  84. }
  85. }
  86. }
  87. ],
  88. "properties": {
  89. "collection": {"type": "keyword"},
  90. "id": {"type": "keyword"},
  91. "vector": {
  92. "type": "dense_vector",
  93. "dims": dimension, # Adjust based on your vector dimensions
  94. "index": True,
  95. "similarity": "cosine",
  96. },
  97. "text": {"type": "text"},
  98. "metadata": {"type": "object"},
  99. }
  100. }
  101. }
  102. self.client.indices.create(index=self._get_index_name(dimension), body=body)
  103. #Status: works
  104. def _create_batches(self, items: list[VectorItem], batch_size=100):
  105. for i in range(0, len(items), batch_size):
  106. yield items[i : min(i + batch_size,len(items))]
  107. #Status: works
  108. def has_collection(self,collection_name) -> bool:
  109. query_body = {"query": {"bool": {"filter": []}}}
  110. query_body["query"]["bool"]["filter"].append({"term": {"collection": collection_name}})
  111. try:
  112. result = self.client.count(
  113. index=f"{self.index_prefix}*",
  114. body=query_body
  115. )
  116. return result.body["count"]>0
  117. except Exception as e:
  118. return None
  119. def delete_collection(self, collection_name: str):
  120. query = {
  121. "query": {
  122. "term": {"collection": collection_name}
  123. }
  124. }
  125. self.client.delete_by_query(index=f"{self.index_prefix}*", body=query)
  126. #Status: works
  127. def search(
  128. self, collection_name: str, vectors: list[list[float]], limit: int
  129. ) -> Optional[SearchResult]:
  130. query = {
  131. "size": limit,
  132. "_source": [
  133. "text",
  134. "metadata"
  135. ],
  136. "query": {
  137. "script_score": {
  138. "query": {
  139. "bool": {
  140. "filter": [
  141. {
  142. "term": {
  143. "collection": collection_name
  144. }
  145. }
  146. ]
  147. }
  148. },
  149. "script": {
  150. "source": "cosineSimilarity(params.vector, 'vector') + 1.0",
  151. "params": {
  152. "vector": vectors[0]
  153. }, # Assuming single query vector
  154. },
  155. }
  156. },
  157. }
  158. result = self.client.search(
  159. index=self._get_index_name(len(vectors[0])), body=query
  160. )
  161. return self._result_to_search_result(result)
  162. #Status: only tested halfwat
  163. def query(
  164. self, collection_name: str, filter: dict, limit: Optional[int] = None
  165. ) -> Optional[GetResult]:
  166. if not self.has_collection(collection_name):
  167. return None
  168. query_body = {
  169. "query": {"bool": {"filter": []}},
  170. "_source": ["text", "metadata"],
  171. }
  172. for field, value in filter.items():
  173. query_body["query"]["bool"]["filter"].append({"term": {field: value}})
  174. query_body["query"]["bool"]["filter"].append({"term": {"collection": collection_name}})
  175. size = limit if limit else 10
  176. try:
  177. result = self.client.search(
  178. index=f"{self.index_prefix}*",
  179. body=query_body,
  180. size=size,
  181. )
  182. return self._result_to_get_result(result)
  183. except Exception as e:
  184. return None
  185. #Status: works
  186. def _has_index(self,dimension:int):
  187. return self.client.indices.exists(index=self._get_index_name(dimension=dimension))
  188. def get_or_create_index(self, dimension: int):
  189. if not self._has_index(dimension=dimension):
  190. self._create_index(dimension=dimension)
  191. #Status: works
  192. def get(self, collection_name: str) -> Optional[GetResult]:
  193. # Get all the items in the collection.
  194. query = {
  195. "query": {
  196. "bool": {
  197. "filter": [
  198. {
  199. "term": {
  200. "collection": collection_name
  201. }
  202. }
  203. ]
  204. }
  205. }, "_source": ["text", "metadata"]}
  206. results = list(scan(self.client, index=f"{self.index_prefix}*", query=query))
  207. return self._scan_result_to_get_result(results)
  208. #Status: works
  209. def insert(self, collection_name: str, items: list[VectorItem]):
  210. if not self._has_index(dimension=len(items[0]["vector"])):
  211. self._create_index(dimension=len(items[0]["vector"]))
  212. for batch in self._create_batches(items):
  213. actions = [
  214. {
  215. "_index":self._get_index_name(dimension=len(items[0]["vector"])),
  216. "_id": item["id"],
  217. "_source": {
  218. "collection": collection_name,
  219. "vector": item["vector"],
  220. "text": item["text"],
  221. "metadata": item["metadata"],
  222. },
  223. }
  224. for item in batch
  225. ]
  226. bulk(self.client,actions)
  227. # Upsert documents using the update API with doc_as_upsert=True.
  228. def upsert(self, collection_name: str, items: list[VectorItem]):
  229. if not self._has_index(dimension=len(items[0]["vector"])):
  230. self._create_index(dimension=len(items[0]["vector"]))
  231. for batch in self._create_batches(items):
  232. actions = [
  233. {
  234. "_op_type": "update",
  235. "_index": self._get_index_name(dimension=len(item["vector"])),
  236. "_id": item["id"],
  237. "doc": {
  238. "collection": collection_name,
  239. "vector": item["vector"],
  240. "text": item["text"],
  241. "metadata": item["metadata"],
  242. },
  243. "doc_as_upsert": True,
  244. }
  245. for item in batch
  246. ]
  247. bulk(self.client,actions)
  248. # Delete specific documents from a collection by filtering on both collection and document IDs.
  249. def delete(
  250. self,
  251. collection_name: str,
  252. ids: Optional[list[str]] = None,
  253. filter: Optional[dict] = None,
  254. ):
  255. query = {
  256. "query": {
  257. "bool": {
  258. "filter": [
  259. {"term": {"collection": collection_name}}
  260. ]
  261. }
  262. }
  263. }
  264. #logic based on chromaDB
  265. if ids:
  266. query["query"]["bool"]["filter"].append({"terms": {"_id": ids}})
  267. elif filter:
  268. for field, value in filter.items():
  269. query["query"]["bool"]["filter"].append({"term": {f"metadata.{field}": value}})
  270. self.client.delete_by_query(index=f"{self.index_prefix}*", body=query)
  271. def reset(self):
  272. indices = self.client.indices.get(index=f"{self.index_prefix}*")
  273. for index in indices:
  274. self.client.indices.delete(index=index)