utils.py 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346
  1. import os
  2. import re
  3. import logging
  4. from typing import List
  5. import requests
  6. from huggingface_hub import snapshot_download
  7. from apps.ollama.main import generate_ollama_embeddings, GenerateEmbeddingsForm
  8. from config import SRC_LOG_LEVELS, CHROMA_CLIENT
  9. log = logging.getLogger(__name__)
  10. log.setLevel(SRC_LOG_LEVELS["RAG"])
  11. def query_doc(collection_name: str, query: str, k: int, embedding_function):
  12. try:
  13. # if you use docker use the model from the environment variable
  14. collection = CHROMA_CLIENT.get_collection(
  15. name=collection_name,
  16. embedding_function=embedding_function,
  17. )
  18. result = collection.query(
  19. query_texts=[query],
  20. n_results=k,
  21. )
  22. return result
  23. except Exception as e:
  24. raise e
  25. def query_embeddings_doc(collection_name: str, query_embeddings, k: int):
  26. try:
  27. # if you use docker use the model from the environment variable
  28. log.info(f"query_embeddings_doc {query_embeddings}")
  29. collection = CHROMA_CLIENT.get_collection(
  30. name=collection_name,
  31. )
  32. result = collection.query(
  33. query_embeddings=[query_embeddings],
  34. n_results=k,
  35. )
  36. log.info(f"query_embeddings_doc:result {result}")
  37. return result
  38. except Exception as e:
  39. raise e
  40. def merge_and_sort_query_results(query_results, k):
  41. # Initialize lists to store combined data
  42. combined_ids = []
  43. combined_distances = []
  44. combined_metadatas = []
  45. combined_documents = []
  46. # Combine data from each dictionary
  47. for data in query_results:
  48. combined_ids.extend(data["ids"][0])
  49. combined_distances.extend(data["distances"][0])
  50. combined_metadatas.extend(data["metadatas"][0])
  51. combined_documents.extend(data["documents"][0])
  52. # Create a list of tuples (distance, id, metadata, document)
  53. combined = list(
  54. zip(combined_distances, combined_ids, combined_metadatas, combined_documents)
  55. )
  56. # Sort the list based on distances
  57. combined.sort(key=lambda x: x[0])
  58. # Unzip the sorted list
  59. sorted_distances, sorted_ids, sorted_metadatas, sorted_documents = zip(*combined)
  60. # Slicing the lists to include only k elements
  61. sorted_distances = list(sorted_distances)[:k]
  62. sorted_ids = list(sorted_ids)[:k]
  63. sorted_metadatas = list(sorted_metadatas)[:k]
  64. sorted_documents = list(sorted_documents)[:k]
  65. # Create the output dictionary
  66. merged_query_results = {
  67. "ids": [sorted_ids],
  68. "distances": [sorted_distances],
  69. "metadatas": [sorted_metadatas],
  70. "documents": [sorted_documents],
  71. "embeddings": None,
  72. "uris": None,
  73. "data": None,
  74. }
  75. return merged_query_results
  76. def query_collection(
  77. collection_names: List[str], query: str, k: int, embedding_function
  78. ):
  79. results = []
  80. for collection_name in collection_names:
  81. try:
  82. # if you use docker use the model from the environment variable
  83. collection = CHROMA_CLIENT.get_collection(
  84. name=collection_name,
  85. embedding_function=embedding_function,
  86. )
  87. result = collection.query(
  88. query_texts=[query],
  89. n_results=k,
  90. )
  91. results.append(result)
  92. except:
  93. pass
  94. return merge_and_sort_query_results(results, k)
  95. def query_embeddings_collection(collection_names: List[str], query_embeddings, k: int):
  96. results = []
  97. log.info(f"query_embeddings_collection {query_embeddings}")
  98. for collection_name in collection_names:
  99. try:
  100. collection = CHROMA_CLIENT.get_collection(name=collection_name)
  101. result = collection.query(
  102. query_embeddings=[query_embeddings],
  103. n_results=k,
  104. )
  105. results.append(result)
  106. except:
  107. pass
  108. return merge_and_sort_query_results(results, k)
  109. def rag_template(template: str, context: str, query: str):
  110. template = template.replace("[context]", context)
  111. template = template.replace("[query]", query)
  112. return template
  113. def rag_messages(
  114. docs,
  115. messages,
  116. template,
  117. k,
  118. embedding_engine,
  119. embedding_model,
  120. embedding_function,
  121. openai_key,
  122. openai_url,
  123. ):
  124. log.debug(
  125. f"docs: {docs} {messages} {embedding_engine} {embedding_model} {embedding_function} {openai_key} {openai_url}"
  126. )
  127. last_user_message_idx = None
  128. for i in range(len(messages) - 1, -1, -1):
  129. if messages[i]["role"] == "user":
  130. last_user_message_idx = i
  131. break
  132. user_message = messages[last_user_message_idx]
  133. if isinstance(user_message["content"], list):
  134. # Handle list content input
  135. content_type = "list"
  136. query = ""
  137. for content_item in user_message["content"]:
  138. if content_item["type"] == "text":
  139. query = content_item["text"]
  140. break
  141. elif isinstance(user_message["content"], str):
  142. # Handle text content input
  143. content_type = "text"
  144. query = user_message["content"]
  145. else:
  146. # Fallback in case the input does not match expected types
  147. content_type = None
  148. query = ""
  149. relevant_contexts = []
  150. for doc in docs:
  151. context = None
  152. try:
  153. if doc["type"] == "text":
  154. context = doc["content"]
  155. else:
  156. if embedding_engine == "":
  157. if doc["type"] == "collection":
  158. context = query_collection(
  159. collection_names=doc["collection_names"],
  160. query=query,
  161. k=k,
  162. embedding_function=embedding_function,
  163. )
  164. else:
  165. context = query_doc(
  166. collection_name=doc["collection_name"],
  167. query=query,
  168. k=k,
  169. embedding_function=embedding_function,
  170. )
  171. else:
  172. if embedding_engine == "ollama":
  173. query_embeddings = generate_ollama_embeddings(
  174. GenerateEmbeddingsForm(
  175. **{
  176. "model": embedding_model,
  177. "prompt": query,
  178. }
  179. )
  180. )
  181. elif embedding_engine == "openai":
  182. query_embeddings = generate_openai_embeddings(
  183. model=embedding_model,
  184. text=query,
  185. key=openai_key,
  186. url=openai_url,
  187. )
  188. if doc["type"] == "collection":
  189. context = query_embeddings_collection(
  190. collection_names=doc["collection_names"],
  191. query_embeddings=query_embeddings,
  192. k=k,
  193. )
  194. else:
  195. context = query_embeddings_doc(
  196. collection_name=doc["collection_name"],
  197. query_embeddings=query_embeddings,
  198. k=k,
  199. )
  200. except Exception as e:
  201. log.exception(e)
  202. context = None
  203. relevant_contexts.append(context)
  204. log.debug(f"relevant_contexts: {relevant_contexts}")
  205. context_string = ""
  206. for context in relevant_contexts:
  207. if context:
  208. context_string += " ".join(context["documents"][0]) + "\n"
  209. ra_content = rag_template(
  210. template=template,
  211. context=context_string,
  212. query=query,
  213. )
  214. if content_type == "list":
  215. new_content = []
  216. for content_item in user_message["content"]:
  217. if content_item["type"] == "text":
  218. # Update the text item's content with ra_content
  219. new_content.append({"type": "text", "text": ra_content})
  220. else:
  221. # Keep other types of content as they are
  222. new_content.append(content_item)
  223. new_user_message = {**user_message, "content": new_content}
  224. else:
  225. new_user_message = {
  226. **user_message,
  227. "content": ra_content,
  228. }
  229. messages[last_user_message_idx] = new_user_message
  230. return messages
  231. def get_embedding_model_path(
  232. embedding_model: str, update_embedding_model: bool = False
  233. ):
  234. # Construct huggingface_hub kwargs with local_files_only to return the snapshot path
  235. cache_dir = os.getenv("SENTENCE_TRANSFORMERS_HOME")
  236. local_files_only = not update_embedding_model
  237. snapshot_kwargs = {
  238. "cache_dir": cache_dir,
  239. "local_files_only": local_files_only,
  240. }
  241. log.debug(f"embedding_model: {embedding_model}")
  242. log.debug(f"snapshot_kwargs: {snapshot_kwargs}")
  243. # Inspiration from upstream sentence_transformers
  244. if (
  245. os.path.exists(embedding_model)
  246. or ("\\" in embedding_model or embedding_model.count("/") > 1)
  247. and local_files_only
  248. ):
  249. # If fully qualified path exists, return input, else set repo_id
  250. return embedding_model
  251. elif "/" not in embedding_model:
  252. # Set valid repo_id for model short-name
  253. embedding_model = "sentence-transformers" + "/" + embedding_model
  254. snapshot_kwargs["repo_id"] = embedding_model
  255. # Attempt to query the huggingface_hub library to determine the local path and/or to update
  256. try:
  257. embedding_model_repo_path = snapshot_download(**snapshot_kwargs)
  258. log.debug(f"embedding_model_repo_path: {embedding_model_repo_path}")
  259. return embedding_model_repo_path
  260. except Exception as e:
  261. log.exception(f"Cannot determine embedding model snapshot path: {e}")
  262. return embedding_model
  263. def generate_openai_embeddings(
  264. model: str, text: str, key: str, url: str = "https://api.openai.com"
  265. ):
  266. try:
  267. r = requests.post(
  268. f"{url}/v1/embeddings",
  269. headers={
  270. "Content-Type": "application/json",
  271. "Authorization": f"Bearer {key}",
  272. },
  273. json={"input": text, "model": model},
  274. )
  275. r.raise_for_status()
  276. data = r.json()
  277. if "data" in data:
  278. return data["data"][0]["embedding"]
  279. else:
  280. raise "Something went wrong :/"
  281. except Exception as e:
  282. print(e)
  283. return None