utils.py 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544
  1. import os
  2. import logging
  3. import requests
  4. from typing import List, Union
  5. from apps.ollama.main import (
  6. generate_ollama_embeddings,
  7. GenerateEmbeddingsForm,
  8. )
  9. from huggingface_hub import snapshot_download
  10. from langchain_core.documents import Document
  11. from langchain_community.retrievers import BM25Retriever
  12. from langchain.retrievers import (
  13. ContextualCompressionRetriever,
  14. EnsembleRetriever,
  15. )
  16. from typing import Optional
  17. from config import SRC_LOG_LEVELS, CHROMA_CLIENT
  18. log = logging.getLogger(__name__)
  19. log.setLevel(SRC_LOG_LEVELS["RAG"])
  20. def query_doc(
  21. collection_name: str,
  22. query: str,
  23. embedding_function,
  24. k: int,
  25. ):
  26. try:
  27. collection = CHROMA_CLIENT.get_collection(name=collection_name)
  28. query_embeddings = embedding_function(query)
  29. result = collection.query(
  30. query_embeddings=[query_embeddings],
  31. n_results=k,
  32. )
  33. log.info(f"query_doc:result {result}")
  34. return result
  35. except Exception as e:
  36. raise e
  37. def query_doc_with_hybrid_search(
  38. collection_name: str,
  39. query: str,
  40. embedding_function,
  41. k: int,
  42. reranking_function,
  43. r: float,
  44. ):
  45. try:
  46. collection = CHROMA_CLIENT.get_collection(name=collection_name)
  47. documents = collection.get() # get all documents
  48. bm25_retriever = BM25Retriever.from_texts(
  49. texts=documents.get("documents"),
  50. metadatas=documents.get("metadatas"),
  51. )
  52. bm25_retriever.k = k
  53. chroma_retriever = ChromaRetriever(
  54. collection=collection,
  55. embedding_function=embedding_function,
  56. top_n=k,
  57. )
  58. ensemble_retriever = EnsembleRetriever(
  59. retrievers=[bm25_retriever, chroma_retriever], weights=[0.5, 0.5]
  60. )
  61. compressor = RerankCompressor(
  62. embedding_function=embedding_function,
  63. top_n=k,
  64. reranking_function=reranking_function,
  65. r_score=r,
  66. )
  67. compression_retriever = ContextualCompressionRetriever(
  68. base_compressor=compressor, base_retriever=ensemble_retriever
  69. )
  70. result = compression_retriever.invoke(query)
  71. result = {
  72. "distances": [[d.metadata.get("score") for d in result]],
  73. "documents": [[d.page_content for d in result]],
  74. "metadatas": [[d.metadata for d in result]],
  75. }
  76. log.info(f"query_doc_with_hybrid_search:result {result}")
  77. return result
  78. except Exception as e:
  79. raise e
  80. def merge_and_sort_query_results(query_results, k, reverse=False):
  81. # Initialize lists to store combined data
  82. combined_distances = []
  83. combined_documents = []
  84. combined_metadatas = []
  85. for data in query_results:
  86. combined_distances.extend(data["distances"][0])
  87. combined_documents.extend(data["documents"][0])
  88. combined_metadatas.extend(data["metadatas"][0])
  89. # Create a list of tuples (distance, document, metadata)
  90. combined = list(zip(combined_distances, combined_documents, combined_metadatas))
  91. # Sort the list based on distances
  92. combined.sort(key=lambda x: x[0], reverse=reverse)
  93. # We don't have anything :-(
  94. if not combined:
  95. sorted_distances = []
  96. sorted_documents = []
  97. sorted_metadatas = []
  98. else:
  99. # Unzip the sorted list
  100. sorted_distances, sorted_documents, sorted_metadatas = zip(*combined)
  101. # Slicing the lists to include only k elements
  102. sorted_distances = list(sorted_distances)[:k]
  103. sorted_documents = list(sorted_documents)[:k]
  104. sorted_metadatas = list(sorted_metadatas)[:k]
  105. # Create the output dictionary
  106. result = {
  107. "distances": [sorted_distances],
  108. "documents": [sorted_documents],
  109. "metadatas": [sorted_metadatas],
  110. }
  111. return result
  112. def query_collection(
  113. collection_names: List[str],
  114. query: str,
  115. embedding_function,
  116. k: int,
  117. ):
  118. results = []
  119. for collection_name in collection_names:
  120. try:
  121. result = query_doc(
  122. collection_name=collection_name,
  123. query=query,
  124. k=k,
  125. embedding_function=embedding_function,
  126. )
  127. results.append(result)
  128. except:
  129. pass
  130. return merge_and_sort_query_results(results, k=k)
  131. def query_collection_with_hybrid_search(
  132. collection_names: List[str],
  133. query: str,
  134. embedding_function,
  135. k: int,
  136. reranking_function,
  137. r: float,
  138. ):
  139. results = []
  140. for collection_name in collection_names:
  141. try:
  142. result = query_doc_with_hybrid_search(
  143. collection_name=collection_name,
  144. query=query,
  145. embedding_function=embedding_function,
  146. k=k,
  147. reranking_function=reranking_function,
  148. r=r,
  149. )
  150. results.append(result)
  151. except:
  152. pass
  153. return merge_and_sort_query_results(results, k=k, reverse=True)
  154. def rag_template(template: str, context: str, query: str):
  155. template = template.replace("[context]", context)
  156. template = template.replace("[query]", query)
  157. return template
  158. def get_embedding_function(
  159. embedding_engine,
  160. embedding_model,
  161. embedding_function,
  162. openai_key,
  163. openai_url,
  164. batch_size,
  165. ):
  166. if embedding_engine == "":
  167. return lambda query: embedding_function.encode(query).tolist()
  168. elif embedding_engine in ["ollama", "openai"]:
  169. if embedding_engine == "ollama":
  170. func = lambda query: generate_ollama_embeddings(
  171. GenerateEmbeddingsForm(
  172. **{
  173. "model": embedding_model,
  174. "prompt": query,
  175. }
  176. )
  177. )
  178. elif embedding_engine == "openai":
  179. func = lambda query: generate_openai_embeddings(
  180. model=embedding_model,
  181. text=query,
  182. key=openai_key,
  183. url=openai_url,
  184. )
  185. def generate_multiple(query, f):
  186. if isinstance(query, list):
  187. if embedding_engine == "openai":
  188. embeddings = []
  189. for i in range(0, len(query), batch_size):
  190. embeddings.extend(f(query[i : i + batch_size]))
  191. return embeddings
  192. else:
  193. return [f(q) for q in query]
  194. else:
  195. return f(query)
  196. return lambda query: generate_multiple(query, func)
  197. def rag_messages(
  198. docs,
  199. messages,
  200. template,
  201. embedding_function,
  202. k,
  203. reranking_function,
  204. r,
  205. hybrid_search,
  206. ):
  207. log.debug(f"docs: {docs} {messages} {embedding_function} {reranking_function}")
  208. last_user_message_idx = None
  209. for i in range(len(messages) - 1, -1, -1):
  210. if messages[i]["role"] == "user":
  211. last_user_message_idx = i
  212. break
  213. user_message = messages[last_user_message_idx]
  214. if isinstance(user_message["content"], list):
  215. # Handle list content input
  216. content_type = "list"
  217. query = ""
  218. for content_item in user_message["content"]:
  219. if content_item["type"] == "text":
  220. query = content_item["text"]
  221. break
  222. elif isinstance(user_message["content"], str):
  223. # Handle text content input
  224. content_type = "text"
  225. query = user_message["content"]
  226. else:
  227. # Fallback in case the input does not match expected types
  228. content_type = None
  229. query = ""
  230. extracted_collections = []
  231. relevant_contexts = []
  232. for doc in docs:
  233. context = None
  234. collection_names = (
  235. doc["collection_names"]
  236. if doc["type"] == "collection"
  237. else [doc["collection_name"]]
  238. )
  239. collection_names = set(collection_names).difference(extracted_collections)
  240. if not collection_names:
  241. log.debug(f"skipping {doc} as it has already been extracted")
  242. continue
  243. try:
  244. if doc["type"] == "text":
  245. context = doc["content"]
  246. else:
  247. if hybrid_search:
  248. context = query_collection_with_hybrid_search(
  249. collection_names=collection_names,
  250. query=query,
  251. embedding_function=embedding_function,
  252. k=k,
  253. reranking_function=reranking_function,
  254. r=r,
  255. )
  256. else:
  257. context = query_collection(
  258. collection_names=collection_names,
  259. query=query,
  260. embedding_function=embedding_function,
  261. k=k,
  262. )
  263. except Exception as e:
  264. log.exception(e)
  265. context = None
  266. if context:
  267. relevant_contexts.append({**context, "source": doc})
  268. extracted_collections.extend(collection_names)
  269. context_string = ""
  270. citations = []
  271. for context in relevant_contexts:
  272. try:
  273. if "documents" in context:
  274. context_string += "\n\n".join(
  275. [text for text in context["documents"][0] if text is not None]
  276. )
  277. if "metadatas" in context:
  278. citations.append(
  279. {
  280. "source": context["source"],
  281. "document": context["documents"][0],
  282. "metadata": context["metadatas"][0],
  283. }
  284. )
  285. except Exception as e:
  286. log.exception(e)
  287. context_string = context_string.strip()
  288. ra_content = rag_template(
  289. template=template,
  290. context=context_string,
  291. query=query,
  292. )
  293. log.debug(f"ra_content: {ra_content}")
  294. if content_type == "list":
  295. new_content = []
  296. for content_item in user_message["content"]:
  297. if content_item["type"] == "text":
  298. # Update the text item's content with ra_content
  299. new_content.append({"type": "text", "text": ra_content})
  300. else:
  301. # Keep other types of content as they are
  302. new_content.append(content_item)
  303. new_user_message = {**user_message, "content": new_content}
  304. else:
  305. new_user_message = {
  306. **user_message,
  307. "content": ra_content,
  308. }
  309. messages[last_user_message_idx] = new_user_message
  310. return messages, citations
  311. def get_model_path(model: str, update_model: bool = False):
  312. # Construct huggingface_hub kwargs with local_files_only to return the snapshot path
  313. cache_dir = os.getenv("SENTENCE_TRANSFORMERS_HOME")
  314. local_files_only = not update_model
  315. snapshot_kwargs = {
  316. "cache_dir": cache_dir,
  317. "local_files_only": local_files_only,
  318. }
  319. log.debug(f"model: {model}")
  320. log.debug(f"snapshot_kwargs: {snapshot_kwargs}")
  321. # Inspiration from upstream sentence_transformers
  322. if (
  323. os.path.exists(model)
  324. or ("\\" in model or model.count("/") > 1)
  325. and local_files_only
  326. ):
  327. # If fully qualified path exists, return input, else set repo_id
  328. return model
  329. elif "/" not in model:
  330. # Set valid repo_id for model short-name
  331. model = "sentence-transformers" + "/" + model
  332. snapshot_kwargs["repo_id"] = model
  333. # Attempt to query the huggingface_hub library to determine the local path and/or to update
  334. try:
  335. model_repo_path = snapshot_download(**snapshot_kwargs)
  336. log.debug(f"model_repo_path: {model_repo_path}")
  337. return model_repo_path
  338. except Exception as e:
  339. log.exception(f"Cannot determine model snapshot path: {e}")
  340. return model
  341. def generate_openai_embeddings(
  342. model: str,
  343. text: Union[str, list[str]],
  344. key: str,
  345. url: str = "https://api.openai.com/v1",
  346. ):
  347. if isinstance(text, list):
  348. embeddings = generate_openai_batch_embeddings(model, text, key, url)
  349. else:
  350. embeddings = generate_openai_batch_embeddings(model, [text], key, url)
  351. return embeddings[0] if isinstance(text, str) else embeddings
  352. def generate_openai_batch_embeddings(
  353. model: str, texts: list[str], key: str, url: str = "https://api.openai.com/v1"
  354. ) -> Optional[list[list[float]]]:
  355. try:
  356. r = requests.post(
  357. f"{url}/embeddings",
  358. headers={
  359. "Content-Type": "application/json",
  360. "Authorization": f"Bearer {key}",
  361. },
  362. json={"input": texts, "model": model},
  363. )
  364. r.raise_for_status()
  365. data = r.json()
  366. if "data" in data:
  367. return [elem["embedding"] for elem in data["data"]]
  368. else:
  369. raise "Something went wrong :/"
  370. except Exception as e:
  371. print(e)
  372. return None
  373. from typing import Any
  374. from langchain_core.retrievers import BaseRetriever
  375. from langchain_core.callbacks import CallbackManagerForRetrieverRun
  376. class ChromaRetriever(BaseRetriever):
  377. collection: Any
  378. embedding_function: Any
  379. top_n: int
  380. def _get_relevant_documents(
  381. self,
  382. query: str,
  383. *,
  384. run_manager: CallbackManagerForRetrieverRun,
  385. ) -> List[Document]:
  386. query_embeddings = self.embedding_function(query)
  387. results = self.collection.query(
  388. query_embeddings=[query_embeddings],
  389. n_results=self.top_n,
  390. )
  391. ids = results["ids"][0]
  392. metadatas = results["metadatas"][0]
  393. documents = results["documents"][0]
  394. results = []
  395. for idx in range(len(ids)):
  396. results.append(
  397. Document(
  398. metadata=metadatas[idx],
  399. page_content=documents[idx],
  400. )
  401. )
  402. return results
  403. import operator
  404. from typing import Optional, Sequence
  405. from langchain_core.documents import BaseDocumentCompressor, Document
  406. from langchain_core.callbacks import Callbacks
  407. from langchain_core.pydantic_v1 import Extra
  408. from sentence_transformers import util
  409. class RerankCompressor(BaseDocumentCompressor):
  410. embedding_function: Any
  411. top_n: int
  412. reranking_function: Any
  413. r_score: float
  414. class Config:
  415. extra = Extra.forbid
  416. arbitrary_types_allowed = True
  417. def compress_documents(
  418. self,
  419. documents: Sequence[Document],
  420. query: str,
  421. callbacks: Optional[Callbacks] = None,
  422. ) -> Sequence[Document]:
  423. reranking = self.reranking_function is not None
  424. if reranking:
  425. scores = self.reranking_function.predict(
  426. [(query, doc.page_content) for doc in documents]
  427. )
  428. else:
  429. query_embedding = self.embedding_function(query)
  430. document_embedding = self.embedding_function(
  431. [doc.page_content for doc in documents]
  432. )
  433. scores = util.cos_sim(query_embedding, document_embedding)[0]
  434. docs_with_scores = list(zip(documents, scores.tolist()))
  435. if self.r_score:
  436. docs_with_scores = [
  437. (d, s) for d, s in docs_with_scores if s >= self.r_score
  438. ]
  439. result = sorted(docs_with_scores, key=operator.itemgetter(1), reverse=True)
  440. final_results = []
  441. for doc, doc_score in result[: self.top_n]:
  442. metadata = doc.metadata
  443. metadata["score"] = doc_score
  444. doc = Document(
  445. page_content=doc.page_content,
  446. metadata=metadata,
  447. )
  448. final_results.append(doc)
  449. return final_results