utils.py 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526
  1. import logging
  2. import os
  3. import uuid
  4. from typing import Optional, Union
  5. import requests
  6. from huggingface_hub import snapshot_download
  7. from langchain.retrievers import ContextualCompressionRetriever, EnsembleRetriever
  8. from langchain_community.retrievers import BM25Retriever
  9. from langchain_core.documents import Document
  10. from open_webui.apps.ollama.main import (
  11. GenerateEmbeddingsForm,
  12. generate_ollama_embeddings,
  13. )
  14. from open_webui.apps.rag.vector.connector import VECTOR_DB_CLIENT
  15. from open_webui.utils.misc import get_last_user_message
  16. from open_webui.env import SRC_LOG_LEVELS
  17. log = logging.getLogger(__name__)
  18. log.setLevel(SRC_LOG_LEVELS["RAG"])
  19. from typing import Any
  20. from langchain_core.callbacks import CallbackManagerForRetrieverRun
  21. from langchain_core.retrievers import BaseRetriever
  22. class VectorSearchRetriever(BaseRetriever):
  23. collection_name: Any
  24. embedding_function: Any
  25. top_k: int
  26. def _get_relevant_documents(
  27. self,
  28. query: str,
  29. *,
  30. run_manager: CallbackManagerForRetrieverRun,
  31. ) -> list[Document]:
  32. result = VECTOR_DB_CLIENT.search(
  33. collection_name=self.collection_name,
  34. vectors=[self.embedding_function(query)],
  35. limit=self.top_k,
  36. )
  37. ids = result.ids[0]
  38. metadatas = result.metadatas[0]
  39. documents = result.documents[0]
  40. results = []
  41. for idx in range(len(ids)):
  42. results.append(
  43. Document(
  44. metadata=metadatas[idx],
  45. page_content=documents[idx],
  46. )
  47. )
  48. return results
  49. def query_doc(
  50. collection_name: str,
  51. query: str,
  52. embedding_function,
  53. k: int,
  54. ):
  55. try:
  56. result = VECTOR_DB_CLIENT.search(
  57. collection_name=collection_name,
  58. vectors=[embedding_function(query)],
  59. limit=k,
  60. )
  61. print("result", result)
  62. log.info(f"query_doc:result {result}")
  63. return result
  64. except Exception as e:
  65. print(e)
  66. raise e
  67. def query_doc_with_hybrid_search(
  68. collection_name: str,
  69. query: str,
  70. embedding_function,
  71. k: int,
  72. reranking_function,
  73. r: float,
  74. ) -> dict:
  75. try:
  76. result = VECTOR_DB_CLIENT.get(collection_name=collection_name)
  77. bm25_retriever = BM25Retriever.from_texts(
  78. texts=result.documents[0],
  79. metadatas=result.metadatas[0],
  80. )
  81. bm25_retriever.k = k
  82. vector_search_retriever = VectorSearchRetriever(
  83. collection_name=collection_name,
  84. embedding_function=embedding_function,
  85. top_k=k,
  86. )
  87. ensemble_retriever = EnsembleRetriever(
  88. retrievers=[bm25_retriever, vector_search_retriever], weights=[0.5, 0.5]
  89. )
  90. compressor = RerankCompressor(
  91. embedding_function=embedding_function,
  92. top_n=k,
  93. reranking_function=reranking_function,
  94. r_score=r,
  95. )
  96. compression_retriever = ContextualCompressionRetriever(
  97. base_compressor=compressor, base_retriever=ensemble_retriever
  98. )
  99. result = compression_retriever.invoke(query)
  100. result = {
  101. "distances": [[d.metadata.get("score") for d in result]],
  102. "documents": [[d.page_content for d in result]],
  103. "metadatas": [[d.metadata for d in result]],
  104. }
  105. log.info(f"query_doc_with_hybrid_search:result {result}")
  106. return result
  107. except Exception as e:
  108. raise e
  109. def merge_and_sort_query_results(
  110. query_results: list[dict], k: int, reverse: bool = False
  111. ) -> list[dict]:
  112. # Initialize lists to store combined data
  113. combined_distances = []
  114. combined_documents = []
  115. combined_metadatas = []
  116. for data in query_results:
  117. combined_distances.extend(data["distances"][0])
  118. combined_documents.extend(data["documents"][0])
  119. combined_metadatas.extend(data["metadatas"][0])
  120. # Create a list of tuples (distance, document, metadata)
  121. combined = list(zip(combined_distances, combined_documents, combined_metadatas))
  122. # Sort the list based on distances
  123. combined.sort(key=lambda x: x[0], reverse=reverse)
  124. # We don't have anything :-(
  125. if not combined:
  126. sorted_distances = []
  127. sorted_documents = []
  128. sorted_metadatas = []
  129. else:
  130. # Unzip the sorted list
  131. sorted_distances, sorted_documents, sorted_metadatas = zip(*combined)
  132. # Slicing the lists to include only k elements
  133. sorted_distances = list(sorted_distances)[:k]
  134. sorted_documents = list(sorted_documents)[:k]
  135. sorted_metadatas = list(sorted_metadatas)[:k]
  136. # Create the output dictionary
  137. result = {
  138. "distances": [sorted_distances],
  139. "documents": [sorted_documents],
  140. "metadatas": [sorted_metadatas],
  141. }
  142. return result
  143. def query_collection(
  144. collection_names: list[str],
  145. query: str,
  146. embedding_function,
  147. k: int,
  148. ) -> dict:
  149. results = []
  150. for collection_name in collection_names:
  151. if collection_name:
  152. try:
  153. result = query_doc(
  154. collection_name=collection_name,
  155. query=query,
  156. k=k,
  157. embedding_function=embedding_function,
  158. )
  159. results.append(result.model_dump())
  160. except Exception as e:
  161. log.exception(f"Error when querying the collection: {e}")
  162. else:
  163. pass
  164. return merge_and_sort_query_results(results, k=k)
  165. def query_collection_with_hybrid_search(
  166. collection_names: list[str],
  167. query: str,
  168. embedding_function,
  169. k: int,
  170. reranking_function,
  171. r: float,
  172. ) -> dict:
  173. results = []
  174. error = False
  175. for collection_name in collection_names:
  176. try:
  177. result = query_doc_with_hybrid_search(
  178. collection_name=collection_name,
  179. query=query,
  180. embedding_function=embedding_function,
  181. k=k,
  182. reranking_function=reranking_function,
  183. r=r,
  184. )
  185. results.append(result)
  186. except Exception as e:
  187. log.exception(
  188. "Error when querying the collection with " f"hybrid_search: {e}"
  189. )
  190. error = True
  191. if error:
  192. raise Exception(
  193. "Hybrid search failed for all collections. Using Non hybrid search as fallback."
  194. )
  195. return merge_and_sort_query_results(results, k=k, reverse=True)
  196. def rag_template(template: str, context: str, query: str):
  197. count = template.count("[context]")
  198. assert "[context]" in template, "RAG template does not contain '[context]'"
  199. if "<context>" in context and "</context>" in context:
  200. log.debug(
  201. "WARNING: Potential prompt injection attack: the RAG "
  202. "context contains '<context>' and '</context>'. This might be "
  203. "nothing, or the user might be trying to hack something."
  204. )
  205. if "[query]" in context:
  206. query_placeholder = f"[query-{str(uuid.uuid4())}]"
  207. template = template.replace("[query]", query_placeholder)
  208. template = template.replace("[context]", context)
  209. template = template.replace(query_placeholder, query)
  210. else:
  211. template = template.replace("[context]", context)
  212. template = template.replace("[query]", query)
  213. return template
  214. def get_embedding_function(
  215. embedding_engine,
  216. embedding_model,
  217. embedding_function,
  218. openai_key,
  219. openai_url,
  220. batch_size,
  221. ):
  222. if embedding_engine == "":
  223. return lambda query: embedding_function.encode(query).tolist()
  224. elif embedding_engine in ["ollama", "openai"]:
  225. if embedding_engine == "ollama":
  226. func = lambda query: generate_ollama_embeddings(
  227. GenerateEmbeddingsForm(
  228. **{
  229. "model": embedding_model,
  230. "prompt": query,
  231. }
  232. )
  233. )
  234. elif embedding_engine == "openai":
  235. func = lambda query: generate_openai_embeddings(
  236. model=embedding_model,
  237. text=query,
  238. key=openai_key,
  239. url=openai_url,
  240. )
  241. def generate_multiple(query, f):
  242. if isinstance(query, list):
  243. if embedding_engine == "openai":
  244. embeddings = []
  245. for i in range(0, len(query), batch_size):
  246. embeddings.extend(f(query[i : i + batch_size]))
  247. return embeddings
  248. else:
  249. return [f(q) for q in query]
  250. else:
  251. return f(query)
  252. return lambda query: generate_multiple(query, func)
  253. def get_rag_context(
  254. files,
  255. messages,
  256. embedding_function,
  257. k,
  258. reranking_function,
  259. r,
  260. hybrid_search,
  261. ):
  262. log.debug(f"files: {files} {messages} {embedding_function} {reranking_function}")
  263. query = get_last_user_message(messages)
  264. extracted_collections = []
  265. relevant_contexts = []
  266. for file in files:
  267. context = None
  268. collection_names = (
  269. file["collection_names"]
  270. if file["type"] == "collection"
  271. else [file["collection_name"]] if file["collection_name"] else []
  272. )
  273. collection_names = set(collection_names).difference(extracted_collections)
  274. if not collection_names:
  275. log.debug(f"skipping {file} as it has already been extracted")
  276. continue
  277. try:
  278. context = None
  279. if file["type"] == "text":
  280. context = file["content"]
  281. else:
  282. if hybrid_search:
  283. try:
  284. context = query_collection_with_hybrid_search(
  285. collection_names=collection_names,
  286. query=query,
  287. embedding_function=embedding_function,
  288. k=k,
  289. reranking_function=reranking_function,
  290. r=r,
  291. )
  292. except Exception as e:
  293. log.debug(
  294. "Error when using hybrid search, using"
  295. " non hybrid search as fallback."
  296. )
  297. if (not hybrid_search) or (context is None):
  298. context = query_collection(
  299. collection_names=collection_names,
  300. query=query,
  301. embedding_function=embedding_function,
  302. k=k,
  303. )
  304. except Exception as e:
  305. log.exception(e)
  306. if context:
  307. relevant_contexts.append({**context, "source": file})
  308. extracted_collections.extend(collection_names)
  309. contexts = []
  310. citations = []
  311. for context in relevant_contexts:
  312. try:
  313. if "documents" in context:
  314. contexts.append(
  315. "\n\n".join(
  316. [text for text in context["documents"][0] if text is not None]
  317. )
  318. )
  319. if "metadatas" in context:
  320. citations.append(
  321. {
  322. "source": context["source"],
  323. "document": context["documents"][0],
  324. "metadata": context["metadatas"][0],
  325. }
  326. )
  327. except Exception as e:
  328. log.exception(e)
  329. return contexts, citations
  330. def get_model_path(model: str, update_model: bool = False):
  331. # Construct huggingface_hub kwargs with local_files_only to return the snapshot path
  332. cache_dir = os.getenv("SENTENCE_TRANSFORMERS_HOME")
  333. local_files_only = not update_model
  334. snapshot_kwargs = {
  335. "cache_dir": cache_dir,
  336. "local_files_only": local_files_only,
  337. }
  338. log.debug(f"model: {model}")
  339. log.debug(f"snapshot_kwargs: {snapshot_kwargs}")
  340. # Inspiration from upstream sentence_transformers
  341. if (
  342. os.path.exists(model)
  343. or ("\\" in model or model.count("/") > 1)
  344. and local_files_only
  345. ):
  346. # If fully qualified path exists, return input, else set repo_id
  347. return model
  348. elif "/" not in model:
  349. # Set valid repo_id for model short-name
  350. model = "sentence-transformers" + "/" + model
  351. snapshot_kwargs["repo_id"] = model
  352. # Attempt to query the huggingface_hub library to determine the local path and/or to update
  353. try:
  354. model_repo_path = snapshot_download(**snapshot_kwargs)
  355. log.debug(f"model_repo_path: {model_repo_path}")
  356. return model_repo_path
  357. except Exception as e:
  358. log.exception(f"Cannot determine model snapshot path: {e}")
  359. return model
  360. def generate_openai_embeddings(
  361. model: str,
  362. text: Union[str, list[str]],
  363. key: str,
  364. url: str = "https://api.openai.com/v1",
  365. ):
  366. if isinstance(text, list):
  367. embeddings = generate_openai_batch_embeddings(model, text, key, url)
  368. else:
  369. embeddings = generate_openai_batch_embeddings(model, [text], key, url)
  370. return embeddings[0] if isinstance(text, str) else embeddings
  371. def generate_openai_batch_embeddings(
  372. model: str, texts: list[str], key: str, url: str = "https://api.openai.com/v1"
  373. ) -> Optional[list[list[float]]]:
  374. try:
  375. r = requests.post(
  376. f"{url}/embeddings",
  377. headers={
  378. "Content-Type": "application/json",
  379. "Authorization": f"Bearer {key}",
  380. },
  381. json={"input": texts, "model": model},
  382. )
  383. r.raise_for_status()
  384. data = r.json()
  385. if "data" in data:
  386. return [elem["embedding"] for elem in data["data"]]
  387. else:
  388. raise "Something went wrong :/"
  389. except Exception as e:
  390. print(e)
  391. return None
  392. import operator
  393. from typing import Optional, Sequence
  394. from langchain_core.callbacks import Callbacks
  395. from langchain_core.documents import BaseDocumentCompressor, Document
  396. class RerankCompressor(BaseDocumentCompressor):
  397. embedding_function: Any
  398. top_n: int
  399. reranking_function: Any
  400. r_score: float
  401. class Config:
  402. extra = "forbid"
  403. arbitrary_types_allowed = True
  404. def compress_documents(
  405. self,
  406. documents: Sequence[Document],
  407. query: str,
  408. callbacks: Optional[Callbacks] = None,
  409. ) -> Sequence[Document]:
  410. reranking = self.reranking_function is not None
  411. if reranking:
  412. scores = self.reranking_function.predict(
  413. [(query, doc.page_content) for doc in documents]
  414. )
  415. else:
  416. from sentence_transformers import util
  417. query_embedding = self.embedding_function(query)
  418. document_embedding = self.embedding_function(
  419. [doc.page_content for doc in documents]
  420. )
  421. scores = util.cos_sim(query_embedding, document_embedding)[0]
  422. docs_with_scores = list(zip(documents, scores.tolist()))
  423. if self.r_score:
  424. docs_with_scores = [
  425. (d, s) for d, s in docs_with_scores if s >= self.r_score
  426. ]
  427. result = sorted(docs_with_scores, key=operator.itemgetter(1), reverse=True)
  428. final_results = []
  429. for doc, doc_score in result[: self.top_n]:
  430. metadata = doc.metadata
  431. metadata["score"] = doc_score
  432. doc = Document(
  433. page_content=doc.page_content,
  434. metadata=metadata,
  435. )
  436. final_results.append(doc)
  437. return final_results