utils.py 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715
  1. import logging
  2. import os
  3. import uuid
  4. from typing import Optional, Union
  5. import asyncio
  6. import requests
  7. import hashlib
  8. from huggingface_hub import snapshot_download
  9. from langchain.retrievers import ContextualCompressionRetriever, EnsembleRetriever
  10. from langchain_community.retrievers import BM25Retriever
  11. from langchain_core.documents import Document
  12. from open_webui.config import VECTOR_DB
  13. from open_webui.retrieval.vector.connector import VECTOR_DB_CLIENT
  14. from open_webui.utils.misc import get_last_user_message, calculate_sha256_string
  15. from open_webui.models.users import UserModel
  16. from open_webui.models.files import Files
  17. from open_webui.env import (
  18. SRC_LOG_LEVELS,
  19. OFFLINE_MODE,
  20. ENABLE_FORWARD_USER_INFO_HEADERS,
  21. )
  22. log = logging.getLogger(__name__)
  23. log.setLevel(SRC_LOG_LEVELS["RAG"])
  24. from typing import Any
  25. from langchain_core.callbacks import CallbackManagerForRetrieverRun
  26. from langchain_core.retrievers import BaseRetriever
  27. class VectorSearchRetriever(BaseRetriever):
  28. collection_name: Any
  29. embedding_function: Any
  30. top_k: int
  31. def _get_relevant_documents(
  32. self,
  33. query: str,
  34. *,
  35. run_manager: CallbackManagerForRetrieverRun,
  36. ) -> list[Document]:
  37. result = VECTOR_DB_CLIENT.search(
  38. collection_name=self.collection_name,
  39. vectors=[self.embedding_function(query)],
  40. limit=self.top_k,
  41. )
  42. ids = result.ids[0]
  43. metadatas = result.metadatas[0]
  44. documents = result.documents[0]
  45. results = []
  46. for idx in range(len(ids)):
  47. results.append(
  48. Document(
  49. metadata=metadatas[idx],
  50. page_content=documents[idx],
  51. )
  52. )
  53. return results
  54. def query_doc(
  55. collection_name: str, query_embedding: list[float], k: int, user: UserModel = None
  56. ):
  57. try:
  58. result = VECTOR_DB_CLIENT.search(
  59. collection_name=collection_name,
  60. vectors=[query_embedding],
  61. limit=k,
  62. )
  63. if result:
  64. log.info(f"query_doc:result {result.ids} {result.metadatas}")
  65. return result
  66. except Exception as e:
  67. log.exception(f"Error querying doc {collection_name} with limit {k}: {e}")
  68. raise e
  69. def get_doc(collection_name: str, user: UserModel = None):
  70. try:
  71. result = VECTOR_DB_CLIENT.get(collection_name=collection_name)
  72. if result:
  73. log.info(f"query_doc:result {result.ids} {result.metadatas}")
  74. return result
  75. except Exception as e:
  76. log.exception(f"Error getting doc {collection_name}: {e}")
  77. raise e
  78. def query_doc_with_hybrid_search(
  79. collection_name: str,
  80. query: str,
  81. embedding_function,
  82. k: int,
  83. reranking_function,
  84. r: float,
  85. ) -> dict:
  86. try:
  87. result = VECTOR_DB_CLIENT.get(collection_name=collection_name)
  88. bm25_retriever = BM25Retriever.from_texts(
  89. texts=result.documents[0],
  90. metadatas=result.metadatas[0],
  91. )
  92. bm25_retriever.k = k
  93. vector_search_retriever = VectorSearchRetriever(
  94. collection_name=collection_name,
  95. embedding_function=embedding_function,
  96. top_k=k,
  97. )
  98. ensemble_retriever = EnsembleRetriever(
  99. retrievers=[bm25_retriever, vector_search_retriever], weights=[0.5, 0.5]
  100. )
  101. compressor = RerankCompressor(
  102. embedding_function=embedding_function,
  103. top_n=k,
  104. reranking_function=reranking_function,
  105. r_score=r,
  106. )
  107. compression_retriever = ContextualCompressionRetriever(
  108. base_compressor=compressor, base_retriever=ensemble_retriever
  109. )
  110. result = compression_retriever.invoke(query)
  111. result = {
  112. "distances": [[d.metadata.get("score") for d in result]],
  113. "documents": [[d.page_content for d in result]],
  114. "metadatas": [[d.metadata for d in result]],
  115. }
  116. log.info(
  117. "query_doc_with_hybrid_search:result "
  118. + f'{result["metadatas"]} {result["distances"]}'
  119. )
  120. return result
  121. except Exception as e:
  122. raise e
  123. def merge_get_results(get_results: list[dict]) -> dict:
  124. # Initialize lists to store combined data
  125. combined_documents = []
  126. combined_metadatas = []
  127. combined_ids = []
  128. for data in get_results:
  129. combined_documents.extend(data["documents"][0])
  130. combined_metadatas.extend(data["metadatas"][0])
  131. combined_ids.extend(data["ids"][0])
  132. # Create the output dictionary
  133. result = {
  134. "documents": [combined_documents],
  135. "metadatas": [combined_metadatas],
  136. "ids": [combined_ids],
  137. }
  138. return result
  139. def merge_and_sort_query_results(
  140. query_results: list[dict], k: int, reverse: bool = False
  141. ) -> dict:
  142. # Initialize lists to store combined data
  143. combined = dict() # To store documents with unique document hashes
  144. for data in query_results:
  145. distances = data["distances"][0]
  146. documents = data["documents"][0]
  147. metadatas = data["metadatas"][0]
  148. for distance, document, metadata in zip(distances, documents, metadatas):
  149. if isinstance(document, str):
  150. doc_hash = hashlib.md5(
  151. document.encode()
  152. ).hexdigest() # Compute a hash for uniqueness
  153. if doc_hash not in combined.keys():
  154. combined[doc_hash] = (distance, document, metadata)
  155. continue # if doc is new, no further comparison is needed
  156. # if doc is alredy in, but new distance is better, update
  157. if not reverse and distance < combined[doc_hash][0]:
  158. # Chroma uses unconventional cosine similarity, so we don't need to reverse the results
  159. # https://docs.trychroma.com/docs/collections/configure#configuring-chroma-collections
  160. combined[doc_hash] = (distance, document, metadata)
  161. if reverse and distance > combined[doc_hash][0]:
  162. combined[doc_hash] = (distance, document, metadata)
  163. combined = list(combined.values())
  164. # Sort the list based on distances
  165. combined.sort(key=lambda x: x[0], reverse=reverse)
  166. # Slice to keep only the top k elements
  167. sorted_distances, sorted_documents, sorted_metadatas = (
  168. zip(*combined[:k]) if combined else ([], [], [])
  169. )
  170. # if chromaDB, the distance is 0 (best) to 2 (worse)
  171. # re-order to -1 (worst) to 1 (best) for relevance score
  172. if not reverse:
  173. sorted_distances = tuple(-dist for dist in sorted_distances)
  174. sorted_distances = tuple(dist + 1 for dist in sorted_distances)
  175. # Create and return the output dictionary
  176. return {
  177. "distances": [list(sorted_distances)],
  178. "documents": [list(sorted_documents)],
  179. "metadatas": [list(sorted_metadatas)],
  180. }
  181. def get_all_items_from_collections(collection_names: list[str]) -> dict:
  182. results = []
  183. for collection_name in collection_names:
  184. if collection_name:
  185. try:
  186. result = get_doc(collection_name=collection_name)
  187. if result is not None:
  188. results.append(result.model_dump())
  189. except Exception as e:
  190. log.exception(f"Error when querying the collection: {e}")
  191. else:
  192. pass
  193. return merge_get_results(results)
  194. def query_collection(
  195. collection_names: list[str],
  196. queries: list[str],
  197. embedding_function,
  198. k: int,
  199. ) -> dict:
  200. results = []
  201. for query in queries:
  202. query_embedding = embedding_function(query)
  203. for collection_name in collection_names:
  204. if collection_name:
  205. try:
  206. result = query_doc(
  207. collection_name=collection_name,
  208. k=k,
  209. query_embedding=query_embedding,
  210. )
  211. if result is not None:
  212. results.append(result.model_dump())
  213. except Exception as e:
  214. log.exception(f"Error when querying the collection: {e}")
  215. else:
  216. pass
  217. if VECTOR_DB == "chroma":
  218. # Chroma uses unconventional cosine similarity, so we don't need to reverse the results
  219. # https://docs.trychroma.com/docs/collections/configure#configuring-chroma-collections
  220. return merge_and_sort_query_results(results, k=k, reverse=False)
  221. else:
  222. return merge_and_sort_query_results(results, k=k, reverse=True)
  223. def query_collection_with_hybrid_search(
  224. collection_names: list[str],
  225. queries: list[str],
  226. embedding_function,
  227. k: int,
  228. reranking_function,
  229. r: float,
  230. ) -> dict:
  231. results = []
  232. error = False
  233. for collection_name in collection_names:
  234. try:
  235. for query in queries:
  236. result = query_doc_with_hybrid_search(
  237. collection_name=collection_name,
  238. query=query,
  239. embedding_function=embedding_function,
  240. k=k,
  241. reranking_function=reranking_function,
  242. r=r,
  243. )
  244. results.append(result)
  245. except Exception as e:
  246. log.exception(
  247. "Error when querying the collection with " f"hybrid_search: {e}"
  248. )
  249. error = True
  250. if error:
  251. raise Exception(
  252. "Hybrid search failed for all collections. Using Non hybrid search as fallback."
  253. )
  254. return merge_and_sort_query_results(results, k=k, reverse=True)
  255. def get_embedding_function(
  256. embedding_engine,
  257. embedding_model,
  258. embedding_function,
  259. url,
  260. key,
  261. embedding_batch_size,
  262. ):
  263. if embedding_engine == "":
  264. return lambda query, user=None: embedding_function.encode(query).tolist()
  265. elif embedding_engine in ["ollama", "openai"]:
  266. func = lambda query, user=None: generate_embeddings(
  267. engine=embedding_engine,
  268. model=embedding_model,
  269. text=query,
  270. url=url,
  271. key=key,
  272. user=user,
  273. )
  274. def generate_multiple(query, user, func):
  275. if isinstance(query, list):
  276. embeddings = []
  277. for i in range(0, len(query), embedding_batch_size):
  278. embeddings.extend(
  279. func(query[i : i + embedding_batch_size], user=user)
  280. )
  281. return embeddings
  282. else:
  283. return func(query, user)
  284. return lambda query, user=None: generate_multiple(query, user, func)
  285. else:
  286. raise ValueError(f"Unknown embedding engine: {embedding_engine}")
  287. def get_sources_from_files(
  288. request,
  289. files,
  290. queries,
  291. embedding_function,
  292. k,
  293. reranking_function,
  294. r,
  295. hybrid_search,
  296. full_context=False,
  297. ):
  298. log.debug(
  299. f"files: {files} {queries} {embedding_function} {reranking_function} {full_context}"
  300. )
  301. extracted_collections = []
  302. relevant_contexts = []
  303. for file in files:
  304. context = None
  305. if file.get("docs"):
  306. # BYPASS_WEB_SEARCH_EMBEDDING_AND_RETRIEVAL
  307. context = {
  308. "documents": [[doc.get("content") for doc in file.get("docs")]],
  309. "metadatas": [[doc.get("metadata") for doc in file.get("docs")]],
  310. }
  311. elif file.get("context") == "full":
  312. # Manual Full Mode Toggle
  313. context = {
  314. "documents": [[file.get("file").get("data", {}).get("content")]],
  315. "metadatas": [[{"file_id": file.get("id"), "name": file.get("name")}]],
  316. }
  317. elif (
  318. file.get("type") != "web_search"
  319. and request.app.state.config.BYPASS_EMBEDDING_AND_RETRIEVAL
  320. ):
  321. # BYPASS_EMBEDDING_AND_RETRIEVAL
  322. if file.get("type") == "collection":
  323. file_ids = file.get("data", {}).get("file_ids", [])
  324. documents = []
  325. metadatas = []
  326. for file_id in file_ids:
  327. file_object = Files.get_file_by_id(file_id)
  328. if file_object:
  329. documents.append(file_object.data.get("content", ""))
  330. metadatas.append(
  331. {
  332. "file_id": file_id,
  333. "name": file_object.filename,
  334. "source": file_object.filename,
  335. }
  336. )
  337. context = {
  338. "documents": [documents],
  339. "metadatas": [metadatas],
  340. }
  341. elif file.get("id"):
  342. file_object = Files.get_file_by_id(file.get("id"))
  343. if file_object:
  344. context = {
  345. "documents": [[file_object.data.get("content", "")]],
  346. "metadatas": [
  347. [
  348. {
  349. "file_id": file.get("id"),
  350. "name": file_object.filename,
  351. "source": file_object.filename,
  352. }
  353. ]
  354. ],
  355. }
  356. elif file.get("file").get("data"):
  357. context = {
  358. "documents": [[file.get("file").get("data", {}).get("content")]],
  359. "metadatas": [
  360. [file.get("file").get("data", {}).get("metadata", {})]
  361. ],
  362. }
  363. else:
  364. collection_names = []
  365. if file.get("type") == "collection":
  366. if file.get("legacy"):
  367. collection_names = file.get("collection_names", [])
  368. else:
  369. collection_names.append(file["id"])
  370. elif file.get("collection_name"):
  371. collection_names.append(file["collection_name"])
  372. elif file.get("id"):
  373. if file.get("legacy"):
  374. collection_names.append(f"{file['id']}")
  375. else:
  376. collection_names.append(f"file-{file['id']}")
  377. collection_names = set(collection_names).difference(extracted_collections)
  378. if not collection_names:
  379. log.debug(f"skipping {file} as it has already been extracted")
  380. continue
  381. if full_context:
  382. try:
  383. context = get_all_items_from_collections(collection_names)
  384. except Exception as e:
  385. log.exception(e)
  386. else:
  387. try:
  388. context = None
  389. if file.get("type") == "text":
  390. context = file["content"]
  391. else:
  392. if hybrid_search:
  393. try:
  394. context = query_collection_with_hybrid_search(
  395. collection_names=collection_names,
  396. queries=queries,
  397. embedding_function=embedding_function,
  398. k=k,
  399. reranking_function=reranking_function,
  400. r=r,
  401. )
  402. except Exception as e:
  403. log.debug(
  404. "Error when using hybrid search, using"
  405. " non hybrid search as fallback."
  406. )
  407. if (not hybrid_search) or (context is None):
  408. context = query_collection(
  409. collection_names=collection_names,
  410. queries=queries,
  411. embedding_function=embedding_function,
  412. k=k,
  413. )
  414. except Exception as e:
  415. log.exception(e)
  416. extracted_collections.extend(collection_names)
  417. if context:
  418. if "data" in file:
  419. del file["data"]
  420. relevant_contexts.append({**context, "file": file})
  421. sources = []
  422. for context in relevant_contexts:
  423. try:
  424. if "documents" in context:
  425. if "metadatas" in context:
  426. source = {
  427. "source": context["file"],
  428. "document": context["documents"][0],
  429. "metadata": context["metadatas"][0],
  430. }
  431. if "distances" in context and context["distances"]:
  432. source["distances"] = context["distances"][0]
  433. sources.append(source)
  434. except Exception as e:
  435. log.exception(e)
  436. return sources
  437. def get_model_path(model: str, update_model: bool = False):
  438. # Construct huggingface_hub kwargs with local_files_only to return the snapshot path
  439. cache_dir = os.getenv("SENTENCE_TRANSFORMERS_HOME")
  440. local_files_only = not update_model
  441. if OFFLINE_MODE:
  442. local_files_only = True
  443. snapshot_kwargs = {
  444. "cache_dir": cache_dir,
  445. "local_files_only": local_files_only,
  446. }
  447. log.debug(f"model: {model}")
  448. log.debug(f"snapshot_kwargs: {snapshot_kwargs}")
  449. # Inspiration from upstream sentence_transformers
  450. if (
  451. os.path.exists(model)
  452. or ("\\" in model or model.count("/") > 1)
  453. and local_files_only
  454. ):
  455. # If fully qualified path exists, return input, else set repo_id
  456. return model
  457. elif "/" not in model:
  458. # Set valid repo_id for model short-name
  459. model = "sentence-transformers" + "/" + model
  460. snapshot_kwargs["repo_id"] = model
  461. # Attempt to query the huggingface_hub library to determine the local path and/or to update
  462. try:
  463. model_repo_path = snapshot_download(**snapshot_kwargs)
  464. log.debug(f"model_repo_path: {model_repo_path}")
  465. return model_repo_path
  466. except Exception as e:
  467. log.exception(f"Cannot determine model snapshot path: {e}")
  468. return model
  469. def generate_openai_batch_embeddings(
  470. model: str,
  471. texts: list[str],
  472. url: str = "https://api.openai.com/v1",
  473. key: str = "",
  474. user: UserModel = None,
  475. ) -> Optional[list[list[float]]]:
  476. try:
  477. r = requests.post(
  478. f"{url}/embeddings",
  479. headers={
  480. "Content-Type": "application/json",
  481. "Authorization": f"Bearer {key}",
  482. **(
  483. {
  484. "X-OpenWebUI-User-Name": user.name,
  485. "X-OpenWebUI-User-Id": user.id,
  486. "X-OpenWebUI-User-Email": user.email,
  487. "X-OpenWebUI-User-Role": user.role,
  488. }
  489. if ENABLE_FORWARD_USER_INFO_HEADERS and user
  490. else {}
  491. ),
  492. },
  493. json={"input": texts, "model": model},
  494. )
  495. r.raise_for_status()
  496. data = r.json()
  497. if "data" in data:
  498. return [elem["embedding"] for elem in data["data"]]
  499. else:
  500. raise "Something went wrong :/"
  501. except Exception as e:
  502. log.exception(f"Error generating openai batch embeddings: {e}")
  503. return None
  504. def generate_ollama_batch_embeddings(
  505. model: str, texts: list[str], url: str, key: str = "", user: UserModel = None
  506. ) -> Optional[list[list[float]]]:
  507. try:
  508. r = requests.post(
  509. f"{url}/api/embed",
  510. headers={
  511. "Content-Type": "application/json",
  512. "Authorization": f"Bearer {key}",
  513. **(
  514. {
  515. "X-OpenWebUI-User-Name": user.name,
  516. "X-OpenWebUI-User-Id": user.id,
  517. "X-OpenWebUI-User-Email": user.email,
  518. "X-OpenWebUI-User-Role": user.role,
  519. }
  520. if ENABLE_FORWARD_USER_INFO_HEADERS
  521. else {}
  522. ),
  523. },
  524. json={"input": texts, "model": model},
  525. )
  526. r.raise_for_status()
  527. data = r.json()
  528. if "embeddings" in data:
  529. return data["embeddings"]
  530. else:
  531. raise "Something went wrong :/"
  532. except Exception as e:
  533. log.exception(f"Error generating ollama batch embeddings: {e}")
  534. return None
  535. def generate_embeddings(engine: str, model: str, text: Union[str, list[str]], **kwargs):
  536. url = kwargs.get("url", "")
  537. key = kwargs.get("key", "")
  538. user = kwargs.get("user")
  539. if engine == "ollama":
  540. if isinstance(text, list):
  541. embeddings = generate_ollama_batch_embeddings(
  542. **{"model": model, "texts": text, "url": url, "key": key, "user": user}
  543. )
  544. else:
  545. embeddings = generate_ollama_batch_embeddings(
  546. **{
  547. "model": model,
  548. "texts": [text],
  549. "url": url,
  550. "key": key,
  551. "user": user,
  552. }
  553. )
  554. return embeddings[0] if isinstance(text, str) else embeddings
  555. elif engine == "openai":
  556. if isinstance(text, list):
  557. embeddings = generate_openai_batch_embeddings(model, text, url, key, user)
  558. else:
  559. embeddings = generate_openai_batch_embeddings(model, [text], url, key, user)
  560. return embeddings[0] if isinstance(text, str) else embeddings
  561. import operator
  562. from typing import Optional, Sequence
  563. from langchain_core.callbacks import Callbacks
  564. from langchain_core.documents import BaseDocumentCompressor, Document
  565. class RerankCompressor(BaseDocumentCompressor):
  566. embedding_function: Any
  567. top_n: int
  568. reranking_function: Any
  569. r_score: float
  570. class Config:
  571. extra = "forbid"
  572. arbitrary_types_allowed = True
  573. def compress_documents(
  574. self,
  575. documents: Sequence[Document],
  576. query: str,
  577. callbacks: Optional[Callbacks] = None,
  578. ) -> Sequence[Document]:
  579. reranking = self.reranking_function is not None
  580. if reranking:
  581. scores = self.reranking_function.predict(
  582. [(query, doc.page_content) for doc in documents]
  583. )
  584. else:
  585. from sentence_transformers import util
  586. query_embedding = self.embedding_function(query)
  587. document_embedding = self.embedding_function(
  588. [doc.page_content for doc in documents]
  589. )
  590. scores = util.cos_sim(query_embedding, document_embedding)[0]
  591. docs_with_scores = list(zip(documents, scores.tolist()))
  592. if self.r_score:
  593. docs_with_scores = [
  594. (d, s) for d, s in docs_with_scores if s >= self.r_score
  595. ]
  596. result = sorted(docs_with_scores, key=operator.itemgetter(1), reverse=True)
  597. final_results = []
  598. for doc, doc_score in result[: self.top_n]:
  599. metadata = doc.metadata
  600. metadata["score"] = doc_score
  601. doc = Document(
  602. page_content=doc.page_content,
  603. metadata=metadata,
  604. )
  605. final_results.append(doc)
  606. return final_results