Dockerfile 3.1 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485
  1. # syntax=docker/dockerfile:1
  2. FROM node:alpine as build
  3. WORKDIR /app
  4. # wget embedding model weight from alpine (does not exist from slim-buster)
  5. RUN wget "https://chroma-onnx-models.s3.amazonaws.com/all-MiniLM-L6-v2/onnx.tar.gz" -O - | \
  6. tar -xzf - -C /app
  7. COPY package.json package-lock.json ./
  8. RUN npm ci
  9. COPY . .
  10. RUN npm run build
  11. FROM python:3.11-slim-bookworm as base
  12. ENV ENV=prod
  13. ENV PORT ""
  14. ENV OLLAMA_BASE_URL "/ollama"
  15. ENV OPENAI_API_BASE_URL ""
  16. ENV OPENAI_API_KEY ""
  17. ENV WEBUI_SECRET_KEY ""
  18. ENV WEBUI_AUTH_TRUSTED_EMAIL_HEADER ""
  19. ENV SCARF_NO_ANALYTICS true
  20. ENV DO_NOT_TRACK true
  21. ######## Preloaded models ########
  22. # whisper TTS Settings
  23. ENV WHISPER_MODEL="base"
  24. ENV WHISPER_MODEL_DIR="/app/backend/data/cache/whisper/models"
  25. # RAG Embedding Model Settings
  26. # any sentence transformer model; models to use can be found at https://huggingface.co/models?library=sentence-transformers
  27. # Leaderboard: https://huggingface.co/spaces/mteb/leaderboard
  28. # for better persormance and multilangauge support use "intfloat/multilingual-e5-large" (~2.5GB) or "intfloat/multilingual-e5-base" (~1.5GB)
  29. # IMPORTANT: If you change the default model (all-MiniLM-L6-v2) and vice versa, you aren't able to use RAG Chat with your previous documents loaded in the WebUI! You need to re-embed them.
  30. ENV RAG_EMBEDDING_MODEL="all-MiniLM-L6-v2"
  31. # device type for whisper tts and embbeding models - "cpu" (default), "cuda" (nvidia gpu and CUDA required) or "mps" (apple silicon) - choosing this right can lead to better performance
  32. ENV RAG_EMBEDDING_MODEL_DEVICE_TYPE="cpu"
  33. ENV RAG_EMBEDDING_MODEL_DIR="/app/backend/data/cache/embedding/models"
  34. ENV SENTENCE_TRANSFORMERS_HOME $RAG_EMBEDDING_MODEL_DIR
  35. ######## Preloaded models ########
  36. WORKDIR /app/backend
  37. # install python dependencies
  38. COPY ./backend/requirements.txt ./requirements.txt
  39. RUN apt-get update && apt-get install ffmpeg libsm6 libxext6 -y
  40. RUN pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu --no-cache-dir
  41. RUN pip3 install -r requirements.txt --no-cache-dir
  42. # Install pandoc and netcat
  43. # RUN python -c "import pypandoc; pypandoc.download_pandoc()"
  44. RUN apt-get update \
  45. && apt-get install -y pandoc netcat-openbsd \
  46. && rm -rf /var/lib/apt/lists/*
  47. # preload embedding model
  48. RUN python -c "import os; from chromadb.utils import embedding_functions; sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFunction(model_name=os.environ['RAG_EMBEDDING_MODEL'], device=os.environ['RAG_EMBEDDING_MODEL_DEVICE_TYPE'])"
  49. # preload tts model
  50. RUN python -c "import os; from faster_whisper import WhisperModel; WhisperModel(os.environ['WHISPER_MODEL'], device='auto', compute_type='int8', download_root=os.environ['WHISPER_MODEL_DIR'])"
  51. # copy embedding weight from build
  52. RUN mkdir -p /root/.cache/chroma/onnx_models/all-MiniLM-L6-v2
  53. COPY --from=build /app/onnx /root/.cache/chroma/onnx_models/all-MiniLM-L6-v2/onnx
  54. # copy built frontend files
  55. COPY --from=build /app/build /app/build
  56. COPY --from=build /app/CHANGELOG.md /app/CHANGELOG.md
  57. COPY --from=build /app/package.json /app/package.json
  58. # copy backend files
  59. COPY ./backend .
  60. CMD [ "bash", "start.sh"]