utils.py 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514
  1. import logging
  2. import os
  3. import uuid
  4. from typing import Optional, Union
  5. import requests
  6. from open_webui.apps.ollama.main import (
  7. GenerateEmbeddingsForm,
  8. generate_ollama_embeddings,
  9. )
  10. from open_webui.config import CHROMA_CLIENT
  11. from open_webui.env import SRC_LOG_LEVELS
  12. from huggingface_hub import snapshot_download
  13. from langchain.retrievers import ContextualCompressionRetriever, EnsembleRetriever
  14. from langchain_community.retrievers import BM25Retriever
  15. from langchain_core.documents import Document
  16. from open_webui.utils.misc import get_last_user_message
  17. log = logging.getLogger(__name__)
  18. log.setLevel(SRC_LOG_LEVELS["RAG"])
  19. def query_doc(
  20. collection_name: str,
  21. query: str,
  22. embedding_function,
  23. k: int,
  24. ):
  25. try:
  26. collection = CHROMA_CLIENT.get_collection(name=collection_name)
  27. query_embeddings = embedding_function(query)
  28. result = collection.query(
  29. query_embeddings=[query_embeddings],
  30. n_results=k,
  31. )
  32. log.info(f"query_doc:result {result}")
  33. return result
  34. except Exception as e:
  35. raise e
  36. def query_doc_with_hybrid_search(
  37. collection_name: str,
  38. query: str,
  39. embedding_function,
  40. k: int,
  41. reranking_function,
  42. r: float,
  43. ):
  44. try:
  45. collection = CHROMA_CLIENT.get_collection(name=collection_name)
  46. documents = collection.get() # get all documents
  47. bm25_retriever = BM25Retriever.from_texts(
  48. texts=documents.get("documents"),
  49. metadatas=documents.get("metadatas"),
  50. )
  51. bm25_retriever.k = k
  52. chroma_retriever = ChromaRetriever(
  53. collection=collection,
  54. embedding_function=embedding_function,
  55. top_n=k,
  56. )
  57. ensemble_retriever = EnsembleRetriever(
  58. retrievers=[bm25_retriever, chroma_retriever], weights=[0.5, 0.5]
  59. )
  60. compressor = RerankCompressor(
  61. embedding_function=embedding_function,
  62. top_n=k,
  63. reranking_function=reranking_function,
  64. r_score=r,
  65. )
  66. compression_retriever = ContextualCompressionRetriever(
  67. base_compressor=compressor, base_retriever=ensemble_retriever
  68. )
  69. result = compression_retriever.invoke(query)
  70. result = {
  71. "distances": [[d.metadata.get("score") for d in result]],
  72. "documents": [[d.page_content for d in result]],
  73. "metadatas": [[d.metadata for d in result]],
  74. }
  75. log.info(f"query_doc_with_hybrid_search:result {result}")
  76. return result
  77. except Exception as e:
  78. raise e
  79. def merge_and_sort_query_results(query_results, k, reverse=False):
  80. # Initialize lists to store combined data
  81. combined_distances = []
  82. combined_documents = []
  83. combined_metadatas = []
  84. for data in query_results:
  85. combined_distances.extend(data["distances"][0])
  86. combined_documents.extend(data["documents"][0])
  87. combined_metadatas.extend(data["metadatas"][0])
  88. # Create a list of tuples (distance, document, metadata)
  89. combined = list(zip(combined_distances, combined_documents, combined_metadatas))
  90. # Sort the list based on distances
  91. combined.sort(key=lambda x: x[0], reverse=reverse)
  92. # We don't have anything :-(
  93. if not combined:
  94. sorted_distances = []
  95. sorted_documents = []
  96. sorted_metadatas = []
  97. else:
  98. # Unzip the sorted list
  99. sorted_distances, sorted_documents, sorted_metadatas = zip(*combined)
  100. # Slicing the lists to include only k elements
  101. sorted_distances = list(sorted_distances)[:k]
  102. sorted_documents = list(sorted_documents)[:k]
  103. sorted_metadatas = list(sorted_metadatas)[:k]
  104. # Create the output dictionary
  105. result = {
  106. "distances": [sorted_distances],
  107. "documents": [sorted_documents],
  108. "metadatas": [sorted_metadatas],
  109. }
  110. return result
  111. def query_collection(
  112. collection_names: list[str],
  113. query: str,
  114. embedding_function,
  115. k: int,
  116. ):
  117. results = []
  118. for collection_name in collection_names:
  119. if collection_name:
  120. try:
  121. result = query_doc(
  122. collection_name=collection_name,
  123. query=query,
  124. k=k,
  125. embedding_function=embedding_function,
  126. )
  127. results.append(result)
  128. except Exception as e:
  129. log.exception(f"Error when querying the collection: {e}")
  130. else:
  131. pass
  132. return merge_and_sort_query_results(results, k=k)
  133. def query_collection_with_hybrid_search(
  134. collection_names: list[str],
  135. query: str,
  136. embedding_function,
  137. k: int,
  138. reranking_function,
  139. r: float,
  140. ):
  141. results = []
  142. failed = 0
  143. for collection_name in collection_names:
  144. try:
  145. result = query_doc_with_hybrid_search(
  146. collection_name=collection_name,
  147. query=query,
  148. embedding_function=embedding_function,
  149. k=k,
  150. reranking_function=reranking_function,
  151. r=r,
  152. )
  153. results.append(result)
  154. except Exception as e:
  155. log.exception(
  156. "Error when querying the collection with "
  157. f"hybrid_search: {e}"
  158. )
  159. failed += 1
  160. if failed == len(collection_names):
  161. raise Exception("Hybrid search failed for all collections. Using "
  162. "Non hybrid search as fallback.")
  163. return merge_and_sort_query_results(results, k=k, reverse=True)
  164. def rag_template(template: str, context: str, query: str):
  165. count = template.count("[context]")
  166. assert count == 1, (
  167. f"RAG template contains an unexpected number of '[context]' : {count}"
  168. )
  169. assert "[context]" in template, "RAG template does not contain '[context]'"
  170. if "[query]" in context:
  171. query_placeholder = str(uuid.uuid4())
  172. template = template.replace("[QUERY]", query_placeholder)
  173. template = template.replace("[context]", context)
  174. template = template.replace(query_placeholder, query)
  175. else:
  176. template = template.replace("[context]", context)
  177. template = template.replace("[query]", query)
  178. return template
  179. def get_embedding_function(
  180. embedding_engine,
  181. embedding_model,
  182. embedding_function,
  183. openai_key,
  184. openai_url,
  185. batch_size,
  186. ):
  187. if embedding_engine == "":
  188. return lambda query: embedding_function.encode(query).tolist()
  189. elif embedding_engine in ["ollama", "openai"]:
  190. if embedding_engine == "ollama":
  191. func = lambda query: generate_ollama_embeddings(
  192. GenerateEmbeddingsForm(
  193. **{
  194. "model": embedding_model,
  195. "prompt": query,
  196. }
  197. )
  198. )
  199. elif embedding_engine == "openai":
  200. func = lambda query: generate_openai_embeddings(
  201. model=embedding_model,
  202. text=query,
  203. key=openai_key,
  204. url=openai_url,
  205. )
  206. def generate_multiple(query, f):
  207. if isinstance(query, list):
  208. if embedding_engine == "openai":
  209. embeddings = []
  210. for i in range(0, len(query), batch_size):
  211. embeddings.extend(f(query[i : i + batch_size]))
  212. return embeddings
  213. else:
  214. return [f(q) for q in query]
  215. else:
  216. return f(query)
  217. return lambda query: generate_multiple(query, func)
  218. def get_rag_context(
  219. files,
  220. messages,
  221. embedding_function,
  222. k,
  223. reranking_function,
  224. r,
  225. hybrid_search,
  226. ):
  227. log.debug(f"files: {files} {messages} {embedding_function} {reranking_function}")
  228. query = get_last_user_message(messages)
  229. extracted_collections = []
  230. relevant_contexts = []
  231. for file in files:
  232. context = None
  233. collection_names = (
  234. file["collection_names"]
  235. if file["type"] == "collection"
  236. else [file["collection_name"]] if file["collection_name"] else []
  237. )
  238. collection_names = set(collection_names).difference(extracted_collections)
  239. if not collection_names:
  240. log.debug(f"skipping {file} as it has already been extracted")
  241. continue
  242. try:
  243. context = None
  244. if file["type"] == "text":
  245. context = file["content"]
  246. else:
  247. if hybrid_search:
  248. try:
  249. context = query_collection_with_hybrid_search(
  250. collection_names=collection_names,
  251. query=query,
  252. embedding_function=embedding_function,
  253. k=k,
  254. reranking_function=reranking_function,
  255. r=r,
  256. )
  257. except Exception as e:
  258. log.debug("Error when using hybrid search, using"
  259. " non hybrid search as fallback.")
  260. if (not hybrid_search) or (context is None):
  261. context = query_collection(
  262. collection_names=collection_names,
  263. query=query,
  264. embedding_function=embedding_function,
  265. k=k,
  266. )
  267. except Exception as e:
  268. log.exception(e)
  269. if context:
  270. relevant_contexts.append({**context, "source": file})
  271. extracted_collections.extend(collection_names)
  272. contexts = []
  273. citations = []
  274. for context in relevant_contexts:
  275. try:
  276. if "documents" in context:
  277. contexts.append(
  278. "\n\n".join(
  279. [text for text in context["documents"][0] if text is not None]
  280. )
  281. )
  282. if "metadatas" in context:
  283. citations.append(
  284. {
  285. "source": context["source"],
  286. "document": context["documents"][0],
  287. "metadata": context["metadatas"][0],
  288. }
  289. )
  290. except Exception as e:
  291. log.exception(e)
  292. return contexts, citations
  293. def get_model_path(model: str, update_model: bool = False):
  294. # Construct huggingface_hub kwargs with local_files_only to return the snapshot path
  295. cache_dir = os.getenv("SENTENCE_TRANSFORMERS_HOME")
  296. local_files_only = not update_model
  297. snapshot_kwargs = {
  298. "cache_dir": cache_dir,
  299. "local_files_only": local_files_only,
  300. }
  301. log.debug(f"model: {model}")
  302. log.debug(f"snapshot_kwargs: {snapshot_kwargs}")
  303. # Inspiration from upstream sentence_transformers
  304. if (
  305. os.path.exists(model)
  306. or ("\\" in model or model.count("/") > 1)
  307. and local_files_only
  308. ):
  309. # If fully qualified path exists, return input, else set repo_id
  310. return model
  311. elif "/" not in model:
  312. # Set valid repo_id for model short-name
  313. model = "sentence-transformers" + "/" + model
  314. snapshot_kwargs["repo_id"] = model
  315. # Attempt to query the huggingface_hub library to determine the local path and/or to update
  316. try:
  317. model_repo_path = snapshot_download(**snapshot_kwargs)
  318. log.debug(f"model_repo_path: {model_repo_path}")
  319. return model_repo_path
  320. except Exception as e:
  321. log.exception(f"Cannot determine model snapshot path: {e}")
  322. return model
  323. def generate_openai_embeddings(
  324. model: str,
  325. text: Union[str, list[str]],
  326. key: str,
  327. url: str = "https://api.openai.com/v1",
  328. ):
  329. if isinstance(text, list):
  330. embeddings = generate_openai_batch_embeddings(model, text, key, url)
  331. else:
  332. embeddings = generate_openai_batch_embeddings(model, [text], key, url)
  333. return embeddings[0] if isinstance(text, str) else embeddings
  334. def generate_openai_batch_embeddings(
  335. model: str, texts: list[str], key: str, url: str = "https://api.openai.com/v1"
  336. ) -> Optional[list[list[float]]]:
  337. try:
  338. r = requests.post(
  339. f"{url}/embeddings",
  340. headers={
  341. "Content-Type": "application/json",
  342. "Authorization": f"Bearer {key}",
  343. },
  344. json={"input": texts, "model": model},
  345. )
  346. r.raise_for_status()
  347. data = r.json()
  348. if "data" in data:
  349. return [elem["embedding"] for elem in data["data"]]
  350. else:
  351. raise "Something went wrong :/"
  352. except Exception as e:
  353. print(e)
  354. return None
  355. from typing import Any
  356. from langchain_core.callbacks import CallbackManagerForRetrieverRun
  357. from langchain_core.retrievers import BaseRetriever
  358. class ChromaRetriever(BaseRetriever):
  359. collection: Any
  360. embedding_function: Any
  361. top_n: int
  362. def _get_relevant_documents(
  363. self,
  364. query: str,
  365. *,
  366. run_manager: CallbackManagerForRetrieverRun,
  367. ) -> list[Document]:
  368. query_embeddings = self.embedding_function(query)
  369. results = self.collection.query(
  370. query_embeddings=[query_embeddings],
  371. n_results=self.top_n,
  372. )
  373. ids = results["ids"][0]
  374. metadatas = results["metadatas"][0]
  375. documents = results["documents"][0]
  376. results = []
  377. for idx in range(len(ids)):
  378. results.append(
  379. Document(
  380. metadata=metadatas[idx],
  381. page_content=documents[idx],
  382. )
  383. )
  384. return results
  385. import operator
  386. from typing import Optional, Sequence
  387. from langchain_core.callbacks import Callbacks
  388. from langchain_core.documents import BaseDocumentCompressor, Document
  389. from langchain_core.pydantic_v1 import Extra
  390. class RerankCompressor(BaseDocumentCompressor):
  391. embedding_function: Any
  392. top_n: int
  393. reranking_function: Any
  394. r_score: float
  395. class Config:
  396. extra = Extra.forbid
  397. arbitrary_types_allowed = True
  398. def compress_documents(
  399. self,
  400. documents: Sequence[Document],
  401. query: str,
  402. callbacks: Optional[Callbacks] = None,
  403. ) -> Sequence[Document]:
  404. reranking = self.reranking_function is not None
  405. if reranking:
  406. scores = self.reranking_function.predict(
  407. [(query, doc.page_content) for doc in documents]
  408. )
  409. else:
  410. from sentence_transformers import util
  411. query_embedding = self.embedding_function(query)
  412. document_embedding = self.embedding_function(
  413. [doc.page_content for doc in documents]
  414. )
  415. scores = util.cos_sim(query_embedding, document_embedding)[0]
  416. docs_with_scores = list(zip(documents, scores.tolist()))
  417. if self.r_score:
  418. docs_with_scores = [
  419. (d, s) for d, s in docs_with_scores if s >= self.r_score
  420. ]
  421. result = sorted(docs_with_scores, key=operator.itemgetter(1), reverse=True)
  422. final_results = []
  423. for doc, doc_score in result[: self.top_n]:
  424. metadata = doc.metadata
  425. metadata["score"] = doc_score
  426. doc = Document(
  427. page_content=doc.page_content,
  428. metadata=metadata,
  429. )
  430. final_results.append(doc)
  431. return final_results