123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492 |
- import os
- import logging
- import requests
- from typing import List
- from apps.ollama.main import (
- generate_ollama_embeddings,
- GenerateEmbeddingsForm,
- )
- from huggingface_hub import snapshot_download
- from langchain_core.documents import Document
- from langchain_community.retrievers import BM25Retriever
- from langchain.retrievers import (
- ContextualCompressionRetriever,
- EnsembleRetriever,
- )
- from sentence_transformers import CrossEncoder
- from typing import Optional
- from config import SRC_LOG_LEVELS, CHROMA_CLIENT
- log = logging.getLogger(__name__)
- log.setLevel(SRC_LOG_LEVELS["RAG"])
- def query_embeddings_doc(
- collection_name: str,
- query: str,
- embeddings_function,
- k: int,
- reranking_function: Optional[CrossEncoder] = None,
- r: Optional[float] = None,
- ):
- try:
- if reranking_function:
- # if you use docker use the model from the environment variable
- collection = CHROMA_CLIENT.get_collection(name=collection_name)
- documents = collection.get() # get all documents
- bm25_retriever = BM25Retriever.from_texts(
- texts=documents.get("documents"),
- metadatas=documents.get("metadatas"),
- )
- bm25_retriever.k = k
- chroma_retriever = ChromaRetriever(
- collection=collection,
- embeddings_function=embeddings_function,
- top_n=k,
- )
- ensemble_retriever = EnsembleRetriever(
- retrievers=[bm25_retriever, chroma_retriever], weights=[0.5, 0.5]
- )
- compressor = RerankCompressor(
- embeddings_function=embeddings_function,
- reranking_function=reranking_function,
- r_score=r,
- top_n=k,
- )
- compression_retriever = ContextualCompressionRetriever(
- base_compressor=compressor, base_retriever=ensemble_retriever
- )
- result = compression_retriever.invoke(query)
- result = {
- "distances": [[d.metadata.get("score") for d in result]],
- "documents": [[d.page_content for d in result]],
- "metadatas": [[d.metadata for d in result]],
- }
- else:
- # if you use docker use the model from the environment variable
- query_embeddings = embeddings_function(query)
- log.info(f"query_embeddings_doc {query_embeddings}")
- collection = CHROMA_CLIENT.get_collection(name=collection_name)
- result = collection.query(
- query_embeddings=[query_embeddings],
- n_results=k,
- )
- log.info(f"query_embeddings_doc:result {result}")
- return result
- except Exception as e:
- raise e
- def merge_and_sort_query_results(query_results, k):
- # Initialize lists to store combined data
- combined_distances = []
- combined_documents = []
- combined_metadatas = []
- for data in query_results:
- combined_distances.extend(data["distances"][0])
- combined_documents.extend(data["documents"][0])
- combined_metadatas.extend(data["metadatas"][0])
- # Create a list of tuples (distance, document, metadata)
- combined = list(zip(combined_distances, combined_documents, combined_metadatas))
- # Sort the list based on distances
- combined.sort(key=lambda x: x[0])
- # We don't have anything :-(
- if not combined:
- sorted_distances = []
- sorted_documents = []
- sorted_metadatas = []
- else:
- # Unzip the sorted list
- sorted_distances, sorted_documents, sorted_metadatas = zip(*combined)
- # Slicing the lists to include only k elements
- sorted_distances = list(sorted_distances)[:k]
- sorted_documents = list(sorted_documents)[:k]
- sorted_metadatas = list(sorted_metadatas)[:k]
- # Create the output dictionary
- result = {
- "distances": [sorted_distances],
- "documents": [sorted_documents],
- "metadatas": [sorted_metadatas],
- }
- return result
- def query_embeddings_collection(
- collection_names: List[str],
- query: str,
- k: int,
- r: float,
- embeddings_function,
- reranking_function,
- ):
- results = []
- for collection_name in collection_names:
- try:
- result = query_embeddings_doc(
- collection_name=collection_name,
- query=query,
- k=k,
- r=r,
- embeddings_function=embeddings_function,
- reranking_function=reranking_function,
- )
- results.append(result)
- except:
- pass
- return merge_and_sort_query_results(results, k)
- def rag_template(template: str, context: str, query: str):
- template = template.replace("[context]", context)
- template = template.replace("[query]", query)
- return template
- def query_embeddings_function(
- embedding_engine,
- embedding_model,
- embedding_function,
- openai_key,
- openai_url,
- ):
- if embedding_engine == "":
- return lambda query: embedding_function.encode(query).tolist()
- elif embedding_engine in ["ollama", "openai"]:
- if embedding_engine == "ollama":
- func = lambda query: generate_ollama_embeddings(
- GenerateEmbeddingsForm(
- **{
- "model": embedding_model,
- "prompt": query,
- }
- )
- )
- elif embedding_engine == "openai":
- func = lambda query: generate_openai_embeddings(
- model=embedding_model,
- text=query,
- key=openai_key,
- url=openai_url,
- )
- def generate_multiple(query, f):
- if isinstance(query, list):
- return [f(q) for q in query]
- else:
- return f(query)
- return lambda query: generate_multiple(query, func)
- def rag_messages(
- docs,
- messages,
- template,
- k,
- r,
- embedding_engine,
- embedding_model,
- embedding_function,
- reranking_function,
- openai_key,
- openai_url,
- ):
- log.debug(
- f"docs: {docs} {messages} {embedding_engine} {embedding_model} {embedding_function} {reranking_function} {openai_key} {openai_url}"
- )
- last_user_message_idx = None
- for i in range(len(messages) - 1, -1, -1):
- if messages[i]["role"] == "user":
- last_user_message_idx = i
- break
- user_message = messages[last_user_message_idx]
- if isinstance(user_message["content"], list):
- # Handle list content input
- content_type = "list"
- query = ""
- for content_item in user_message["content"]:
- if content_item["type"] == "text":
- query = content_item["text"]
- break
- elif isinstance(user_message["content"], str):
- # Handle text content input
- content_type = "text"
- query = user_message["content"]
- else:
- # Fallback in case the input does not match expected types
- content_type = None
- query = ""
- embeddings_function = query_embeddings_function(
- embedding_engine,
- embedding_model,
- embedding_function,
- openai_key,
- openai_url,
- )
- extracted_collections = []
- relevant_contexts = []
- for doc in docs:
- context = None
- collection = doc.get("collection_name")
- if collection:
- collection = [collection]
- else:
- collection = doc.get("collection_names", [])
- collection = set(collection).difference(extracted_collections)
- if not collection:
- log.debug(f"skipping {doc} as it has already been extracted")
- continue
- try:
- if doc["type"] == "text":
- context = doc["content"]
- elif doc["type"] == "collection":
- context = query_embeddings_collection(
- collection_names=doc["collection_names"],
- query=query,
- k=k,
- r=r,
- embeddings_function=embeddings_function,
- reranking_function=reranking_function,
- )
- else:
- context = query_embeddings_doc(
- collection_name=doc["collection_name"],
- query=query,
- k=k,
- r=r,
- embeddings_function=embeddings_function,
- reranking_function=reranking_function,
- )
- except Exception as e:
- log.exception(e)
- context = None
- if context:
- relevant_contexts.append(context)
- extracted_collections.extend(collection)
- context_string = ""
- for context in relevant_contexts:
- items = context["documents"][0]
- context_string += "\n\n".join(items)
- context_string = context_string.strip()
- ra_content = rag_template(
- template=template,
- context=context_string,
- query=query,
- )
- log.debug(f"ra_content: {ra_content}")
- if content_type == "list":
- new_content = []
- for content_item in user_message["content"]:
- if content_item["type"] == "text":
- # Update the text item's content with ra_content
- new_content.append({"type": "text", "text": ra_content})
- else:
- # Keep other types of content as they are
- new_content.append(content_item)
- new_user_message = {**user_message, "content": new_content}
- else:
- new_user_message = {
- **user_message,
- "content": ra_content,
- }
- messages[last_user_message_idx] = new_user_message
- return messages
- def get_model_path(model: str, update_model: bool = False):
- # Construct huggingface_hub kwargs with local_files_only to return the snapshot path
- cache_dir = os.getenv("SENTENCE_TRANSFORMERS_HOME")
- local_files_only = not update_model
- snapshot_kwargs = {
- "cache_dir": cache_dir,
- "local_files_only": local_files_only,
- }
- log.debug(f"model: {model}")
- log.debug(f"snapshot_kwargs: {snapshot_kwargs}")
- # Inspiration from upstream sentence_transformers
- if (
- os.path.exists(model)
- or ("\\" in model or model.count("/") > 1)
- and local_files_only
- ):
- # If fully qualified path exists, return input, else set repo_id
- return model
- elif "/" not in model:
- # Set valid repo_id for model short-name
- model = "sentence-transformers" + "/" + model
- snapshot_kwargs["repo_id"] = model
- # Attempt to query the huggingface_hub library to determine the local path and/or to update
- try:
- model_repo_path = snapshot_download(**snapshot_kwargs)
- log.debug(f"model_repo_path: {model_repo_path}")
- return model_repo_path
- except Exception as e:
- log.exception(f"Cannot determine model snapshot path: {e}")
- return model
- def generate_openai_embeddings(
- model: str, text: str, key: str, url: str = "https://api.openai.com/v1"
- ):
- try:
- r = requests.post(
- f"{url}/embeddings",
- headers={
- "Content-Type": "application/json",
- "Authorization": f"Bearer {key}",
- },
- json={"input": text, "model": model},
- )
- r.raise_for_status()
- data = r.json()
- if "data" in data:
- return data["data"][0]["embedding"]
- else:
- raise "Something went wrong :/"
- except Exception as e:
- print(e)
- return None
- from typing import Any
- from langchain_core.retrievers import BaseRetriever
- from langchain_core.callbacks import CallbackManagerForRetrieverRun
- class ChromaRetriever(BaseRetriever):
- collection: Any
- embeddings_function: Any
- top_n: int
- def _get_relevant_documents(
- self,
- query: str,
- *,
- run_manager: CallbackManagerForRetrieverRun,
- ) -> List[Document]:
- query_embeddings = self.embeddings_function(query)
- results = self.collection.query(
- query_embeddings=[query_embeddings],
- n_results=self.top_n,
- )
- ids = results["ids"][0]
- metadatas = results["metadatas"][0]
- documents = results["documents"][0]
- return [
- Document(
- metadata=metadatas[idx],
- page_content=documents[idx],
- )
- for idx in range(len(ids))
- ]
- import operator
- from typing import Optional, Sequence
- from langchain_core.documents import BaseDocumentCompressor, Document
- from langchain_core.callbacks import Callbacks
- from langchain_core.pydantic_v1 import Extra
- from sentence_transformers import util
- class RerankCompressor(BaseDocumentCompressor):
- embeddings_function: Any
- reranking_function: Any
- r_score: float
- top_n: int
- class Config:
- extra = Extra.forbid
- arbitrary_types_allowed = True
- def compress_documents(
- self,
- documents: Sequence[Document],
- query: str,
- callbacks: Optional[Callbacks] = None,
- ) -> Sequence[Document]:
- if self.reranking_function:
- scores = self.reranking_function.predict(
- [(query, doc.page_content) for doc in documents]
- )
- else:
- query_embedding = self.embeddings_function(query)
- document_embedding = self.embeddings_function(
- [doc.page_content for doc in documents]
- )
- scores = util.cos_sim(query_embedding, document_embedding)[0]
- docs_with_scores = list(zip(documents, scores.tolist()))
- if self.r_score:
- docs_with_scores = [
- (d, s) for d, s in docs_with_scores if s >= self.r_score
- ]
- result = sorted(docs_with_scores, key=operator.itemgetter(1), reverse=True)
- final_results = []
- for doc, doc_score in result[: self.top_n]:
- metadata = doc.metadata
- metadata["score"] = doc_score
- doc = Document(
- page_content=doc.page_content,
- metadata=metadata,
- )
- final_results.append(doc)
- return final_results
|