utils.py 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533
  1. import os
  2. import logging
  3. import requests
  4. from typing import List
  5. from apps.ollama.main import (
  6. generate_ollama_embeddings,
  7. GenerateEmbeddingsForm,
  8. )
  9. from huggingface_hub import snapshot_download
  10. from langchain_core.documents import Document
  11. from langchain_community.retrievers import BM25Retriever
  12. from langchain.retrievers import (
  13. ContextualCompressionRetriever,
  14. EnsembleRetriever,
  15. )
  16. from typing import Optional
  17. from config import (
  18. SRC_LOG_LEVELS,
  19. CHROMA_CLIENT,
  20. SEARXNG_QUERY_URL,
  21. GOOGLE_PSE_API_KEY,
  22. GOOGLE_PSE_ENGINE_ID,
  23. BRAVE_SEARCH_API_KEY,
  24. SERPSTACK_API_KEY,
  25. SERPSTACK_HTTPS,
  26. SERPER_API_KEY,
  27. )
  28. log = logging.getLogger(__name__)
  29. log.setLevel(SRC_LOG_LEVELS["RAG"])
  30. def query_doc(
  31. collection_name: str,
  32. query: str,
  33. embedding_function,
  34. k: int,
  35. ):
  36. try:
  37. collection = CHROMA_CLIENT.get_collection(name=collection_name)
  38. query_embeddings = embedding_function(query)
  39. result = collection.query(
  40. query_embeddings=[query_embeddings],
  41. n_results=k,
  42. )
  43. log.info(f"query_doc:result {result}")
  44. return result
  45. except Exception as e:
  46. raise e
  47. def query_doc_with_hybrid_search(
  48. collection_name: str,
  49. query: str,
  50. embedding_function,
  51. k: int,
  52. reranking_function,
  53. r: float,
  54. ):
  55. try:
  56. collection = CHROMA_CLIENT.get_collection(name=collection_name)
  57. documents = collection.get() # get all documents
  58. bm25_retriever = BM25Retriever.from_texts(
  59. texts=documents.get("documents"),
  60. metadatas=documents.get("metadatas"),
  61. )
  62. bm25_retriever.k = k
  63. chroma_retriever = ChromaRetriever(
  64. collection=collection,
  65. embedding_function=embedding_function,
  66. top_n=k,
  67. )
  68. ensemble_retriever = EnsembleRetriever(
  69. retrievers=[bm25_retriever, chroma_retriever], weights=[0.5, 0.5]
  70. )
  71. compressor = RerankCompressor(
  72. embedding_function=embedding_function,
  73. top_n=k,
  74. reranking_function=reranking_function,
  75. r_score=r,
  76. )
  77. compression_retriever = ContextualCompressionRetriever(
  78. base_compressor=compressor, base_retriever=ensemble_retriever
  79. )
  80. result = compression_retriever.invoke(query)
  81. result = {
  82. "distances": [[d.metadata.get("score") for d in result]],
  83. "documents": [[d.page_content for d in result]],
  84. "metadatas": [[d.metadata for d in result]],
  85. }
  86. log.info(f"query_doc_with_hybrid_search:result {result}")
  87. return result
  88. except Exception as e:
  89. raise e
  90. def merge_and_sort_query_results(query_results, k, reverse=False):
  91. # Initialize lists to store combined data
  92. combined_distances = []
  93. combined_documents = []
  94. combined_metadatas = []
  95. for data in query_results:
  96. combined_distances.extend(data["distances"][0])
  97. combined_documents.extend(data["documents"][0])
  98. combined_metadatas.extend(data["metadatas"][0])
  99. # Create a list of tuples (distance, document, metadata)
  100. combined = list(zip(combined_distances, combined_documents, combined_metadatas))
  101. # Sort the list based on distances
  102. combined.sort(key=lambda x: x[0], reverse=reverse)
  103. # We don't have anything :-(
  104. if not combined:
  105. sorted_distances = []
  106. sorted_documents = []
  107. sorted_metadatas = []
  108. else:
  109. # Unzip the sorted list
  110. sorted_distances, sorted_documents, sorted_metadatas = zip(*combined)
  111. # Slicing the lists to include only k elements
  112. sorted_distances = list(sorted_distances)[:k]
  113. sorted_documents = list(sorted_documents)[:k]
  114. sorted_metadatas = list(sorted_metadatas)[:k]
  115. # Create the output dictionary
  116. result = {
  117. "distances": [sorted_distances],
  118. "documents": [sorted_documents],
  119. "metadatas": [sorted_metadatas],
  120. }
  121. return result
  122. def query_collection(
  123. collection_names: List[str],
  124. query: str,
  125. embedding_function,
  126. k: int,
  127. ):
  128. results = []
  129. for collection_name in collection_names:
  130. try:
  131. result = query_doc(
  132. collection_name=collection_name,
  133. query=query,
  134. k=k,
  135. embedding_function=embedding_function,
  136. )
  137. results.append(result)
  138. except:
  139. pass
  140. return merge_and_sort_query_results(results, k=k)
  141. def query_collection_with_hybrid_search(
  142. collection_names: List[str],
  143. query: str,
  144. embedding_function,
  145. k: int,
  146. reranking_function,
  147. r: float,
  148. ):
  149. results = []
  150. for collection_name in collection_names:
  151. try:
  152. result = query_doc_with_hybrid_search(
  153. collection_name=collection_name,
  154. query=query,
  155. embedding_function=embedding_function,
  156. k=k,
  157. reranking_function=reranking_function,
  158. r=r,
  159. )
  160. results.append(result)
  161. except:
  162. pass
  163. return merge_and_sort_query_results(results, k=k, reverse=True)
  164. def rag_template(template: str, context: str, query: str):
  165. template = template.replace("[context]", context)
  166. template = template.replace("[query]", query)
  167. return template
  168. def get_embedding_function(
  169. embedding_engine,
  170. embedding_model,
  171. embedding_function,
  172. openai_key,
  173. openai_url,
  174. ):
  175. if embedding_engine == "":
  176. return lambda query: embedding_function.encode(query).tolist()
  177. elif embedding_engine in ["ollama", "openai"]:
  178. if embedding_engine == "ollama":
  179. func = lambda query: generate_ollama_embeddings(
  180. GenerateEmbeddingsForm(
  181. **{
  182. "model": embedding_model,
  183. "prompt": query,
  184. }
  185. )
  186. )
  187. elif embedding_engine == "openai":
  188. func = lambda query: generate_openai_embeddings(
  189. model=embedding_model,
  190. text=query,
  191. key=openai_key,
  192. url=openai_url,
  193. )
  194. def generate_multiple(query, f):
  195. if isinstance(query, list):
  196. return [f(q) for q in query]
  197. else:
  198. return f(query)
  199. return lambda query: generate_multiple(query, func)
  200. def rag_messages(
  201. docs,
  202. messages,
  203. template,
  204. embedding_function,
  205. k,
  206. reranking_function,
  207. r,
  208. hybrid_search,
  209. ):
  210. log.debug(f"docs: {docs} {messages} {embedding_function} {reranking_function}")
  211. last_user_message_idx = None
  212. for i in range(len(messages) - 1, -1, -1):
  213. if messages[i]["role"] == "user":
  214. last_user_message_idx = i
  215. break
  216. user_message = messages[last_user_message_idx]
  217. if isinstance(user_message["content"], list):
  218. # Handle list content input
  219. content_type = "list"
  220. query = ""
  221. for content_item in user_message["content"]:
  222. if content_item["type"] == "text":
  223. query = content_item["text"]
  224. break
  225. elif isinstance(user_message["content"], str):
  226. # Handle text content input
  227. content_type = "text"
  228. query = user_message["content"]
  229. else:
  230. # Fallback in case the input does not match expected types
  231. content_type = None
  232. query = ""
  233. extracted_collections = []
  234. relevant_contexts = []
  235. for doc in docs:
  236. context = None
  237. collection_names = (
  238. doc["collection_names"]
  239. if doc["type"] == "collection"
  240. else [doc["collection_name"]]
  241. )
  242. collection_names = set(collection_names).difference(extracted_collections)
  243. if not collection_names:
  244. log.debug(f"skipping {doc} as it has already been extracted")
  245. continue
  246. try:
  247. if doc["type"] == "text":
  248. context = doc["content"]
  249. else:
  250. if hybrid_search:
  251. context = query_collection_with_hybrid_search(
  252. collection_names=collection_names,
  253. query=query,
  254. embedding_function=embedding_function,
  255. k=k,
  256. reranking_function=reranking_function,
  257. r=r,
  258. )
  259. else:
  260. context = query_collection(
  261. collection_names=collection_names,
  262. query=query,
  263. embedding_function=embedding_function,
  264. k=k,
  265. )
  266. except Exception as e:
  267. log.exception(e)
  268. context = None
  269. if context:
  270. relevant_contexts.append({**context, "source": doc})
  271. extracted_collections.extend(collection_names)
  272. context_string = ""
  273. citations = []
  274. for context in relevant_contexts:
  275. try:
  276. if "documents" in context:
  277. context_string += "\n\n".join(
  278. [text for text in context["documents"][0] if text is not None]
  279. )
  280. if "metadatas" in context:
  281. citations.append(
  282. {
  283. "source": context["source"],
  284. "document": context["documents"][0],
  285. "metadata": context["metadatas"][0],
  286. }
  287. )
  288. except Exception as e:
  289. log.exception(e)
  290. context_string = context_string.strip()
  291. ra_content = rag_template(
  292. template=template,
  293. context=context_string,
  294. query=query,
  295. )
  296. log.debug(f"ra_content: {ra_content}")
  297. if content_type == "list":
  298. new_content = []
  299. for content_item in user_message["content"]:
  300. if content_item["type"] == "text":
  301. # Update the text item's content with ra_content
  302. new_content.append({"type": "text", "text": ra_content})
  303. else:
  304. # Keep other types of content as they are
  305. new_content.append(content_item)
  306. new_user_message = {**user_message, "content": new_content}
  307. else:
  308. new_user_message = {
  309. **user_message,
  310. "content": ra_content,
  311. }
  312. messages[last_user_message_idx] = new_user_message
  313. return messages, citations
  314. def get_model_path(model: str, update_model: bool = False):
  315. # Construct huggingface_hub kwargs with local_files_only to return the snapshot path
  316. cache_dir = os.getenv("SENTENCE_TRANSFORMERS_HOME")
  317. local_files_only = not update_model
  318. snapshot_kwargs = {
  319. "cache_dir": cache_dir,
  320. "local_files_only": local_files_only,
  321. }
  322. log.debug(f"model: {model}")
  323. log.debug(f"snapshot_kwargs: {snapshot_kwargs}")
  324. # Inspiration from upstream sentence_transformers
  325. if (
  326. os.path.exists(model)
  327. or ("\\" in model or model.count("/") > 1)
  328. and local_files_only
  329. ):
  330. # If fully qualified path exists, return input, else set repo_id
  331. return model
  332. elif "/" not in model:
  333. # Set valid repo_id for model short-name
  334. model = "sentence-transformers" + "/" + model
  335. snapshot_kwargs["repo_id"] = model
  336. # Attempt to query the huggingface_hub library to determine the local path and/or to update
  337. try:
  338. model_repo_path = snapshot_download(**snapshot_kwargs)
  339. log.debug(f"model_repo_path: {model_repo_path}")
  340. return model_repo_path
  341. except Exception as e:
  342. log.exception(f"Cannot determine model snapshot path: {e}")
  343. return model
  344. def generate_openai_embeddings(
  345. model: str, text: str, key: str, url: str = "https://api.openai.com/v1"
  346. ):
  347. try:
  348. r = requests.post(
  349. f"{url}/embeddings",
  350. headers={
  351. "Content-Type": "application/json",
  352. "Authorization": f"Bearer {key}",
  353. },
  354. json={"input": text, "model": model},
  355. )
  356. r.raise_for_status()
  357. data = r.json()
  358. if "data" in data:
  359. return data["data"][0]["embedding"]
  360. else:
  361. raise "Something went wrong :/"
  362. except Exception as e:
  363. print(e)
  364. return None
  365. from typing import Any
  366. from langchain_core.retrievers import BaseRetriever
  367. from langchain_core.callbacks import CallbackManagerForRetrieverRun
  368. class ChromaRetriever(BaseRetriever):
  369. collection: Any
  370. embedding_function: Any
  371. top_n: int
  372. def _get_relevant_documents(
  373. self,
  374. query: str,
  375. *,
  376. run_manager: CallbackManagerForRetrieverRun,
  377. ) -> List[Document]:
  378. query_embeddings = self.embedding_function(query)
  379. results = self.collection.query(
  380. query_embeddings=[query_embeddings],
  381. n_results=self.top_n,
  382. )
  383. ids = results["ids"][0]
  384. metadatas = results["metadatas"][0]
  385. documents = results["documents"][0]
  386. results = []
  387. for idx in range(len(ids)):
  388. results.append(
  389. Document(
  390. metadata=metadatas[idx],
  391. page_content=documents[idx],
  392. )
  393. )
  394. return results
  395. import operator
  396. from typing import Optional, Sequence
  397. from langchain_core.documents import BaseDocumentCompressor, Document
  398. from langchain_core.callbacks import Callbacks
  399. from langchain_core.pydantic_v1 import Extra
  400. from sentence_transformers import util
  401. class RerankCompressor(BaseDocumentCompressor):
  402. embedding_function: Any
  403. top_n: int
  404. reranking_function: Any
  405. r_score: float
  406. class Config:
  407. extra = Extra.forbid
  408. arbitrary_types_allowed = True
  409. def compress_documents(
  410. self,
  411. documents: Sequence[Document],
  412. query: str,
  413. callbacks: Optional[Callbacks] = None,
  414. ) -> Sequence[Document]:
  415. reranking = self.reranking_function is not None
  416. if reranking:
  417. scores = self.reranking_function.predict(
  418. [(query, doc.page_content) for doc in documents]
  419. )
  420. else:
  421. query_embedding = self.embedding_function(query)
  422. document_embedding = self.embedding_function(
  423. [doc.page_content for doc in documents]
  424. )
  425. scores = util.cos_sim(query_embedding, document_embedding)[0]
  426. docs_with_scores = list(zip(documents, scores.tolist()))
  427. if self.r_score:
  428. docs_with_scores = [
  429. (d, s) for d, s in docs_with_scores if s >= self.r_score
  430. ]
  431. result = sorted(docs_with_scores, key=operator.itemgetter(1), reverse=True)
  432. final_results = []
  433. for doc, doc_score in result[: self.top_n]:
  434. metadata = doc.metadata
  435. metadata["score"] = doc_score
  436. doc = Document(
  437. page_content=doc.page_content,
  438. metadata=metadata,
  439. )
  440. final_results.append(doc)
  441. return final_results