main.py 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617
  1. from fastapi import (
  2. FastAPI,
  3. Depends,
  4. HTTPException,
  5. status,
  6. UploadFile,
  7. File,
  8. Form,
  9. )
  10. from fastapi.middleware.cors import CORSMiddleware
  11. import os, shutil, logging
  12. from pathlib import Path
  13. from typing import List
  14. from sentence_transformers import SentenceTransformer
  15. from chromadb.utils import embedding_functions
  16. from langchain_community.document_loaders import (
  17. WebBaseLoader,
  18. TextLoader,
  19. PyPDFLoader,
  20. CSVLoader,
  21. BSHTMLLoader,
  22. Docx2txtLoader,
  23. UnstructuredEPubLoader,
  24. UnstructuredWordDocumentLoader,
  25. UnstructuredMarkdownLoader,
  26. UnstructuredXMLLoader,
  27. UnstructuredRSTLoader,
  28. UnstructuredExcelLoader,
  29. )
  30. from langchain.text_splitter import RecursiveCharacterTextSplitter
  31. from pydantic import BaseModel
  32. from typing import Optional
  33. import mimetypes
  34. import uuid
  35. import json
  36. from apps.web.models.documents import (
  37. Documents,
  38. DocumentForm,
  39. DocumentResponse,
  40. )
  41. from apps.rag.utils import query_doc, query_collection
  42. from utils.misc import (
  43. calculate_sha256,
  44. calculate_sha256_string,
  45. sanitize_filename,
  46. extract_folders_after_data_docs,
  47. )
  48. from utils.utils import get_current_user, get_admin_user
  49. from config import (
  50. SRC_LOG_LEVELS,
  51. UPLOAD_DIR,
  52. DOCS_DIR,
  53. RAG_EMBEDDING_MODEL,
  54. DEVICE_TYPE,
  55. CHROMA_CLIENT,
  56. CHUNK_SIZE,
  57. CHUNK_OVERLAP,
  58. RAG_TEMPLATE,
  59. )
  60. from constants import ERROR_MESSAGES
  61. log = logging.getLogger(__name__)
  62. log.setLevel(SRC_LOG_LEVELS["RAG"])
  63. app = FastAPI()
  64. app.state.PDF_EXTRACT_IMAGES = False
  65. app.state.CHUNK_SIZE = CHUNK_SIZE
  66. app.state.CHUNK_OVERLAP = CHUNK_OVERLAP
  67. app.state.RAG_TEMPLATE = RAG_TEMPLATE
  68. app.state.RAG_EMBEDDING_MODEL = RAG_EMBEDDING_MODEL
  69. app.state.TOP_K = 4
  70. app.state.sentence_transformer_ef = (
  71. embedding_functions.SentenceTransformerEmbeddingFunction(
  72. model_name=app.state.RAG_EMBEDDING_MODEL,
  73. device=DEVICE_TYPE,
  74. )
  75. )
  76. origins = ["*"]
  77. app.add_middleware(
  78. CORSMiddleware,
  79. allow_origins=origins,
  80. allow_credentials=True,
  81. allow_methods=["*"],
  82. allow_headers=["*"],
  83. )
  84. class CollectionNameForm(BaseModel):
  85. collection_name: Optional[str] = "test"
  86. class StoreWebForm(CollectionNameForm):
  87. url: str
  88. @app.get("/")
  89. async def get_status():
  90. return {
  91. "status": True,
  92. "chunk_size": app.state.CHUNK_SIZE,
  93. "chunk_overlap": app.state.CHUNK_OVERLAP,
  94. "template": app.state.RAG_TEMPLATE,
  95. "embedding_model": app.state.RAG_EMBEDDING_MODEL,
  96. }
  97. @app.get("/embedding/model")
  98. async def get_embedding_model(user=Depends(get_admin_user)):
  99. return {
  100. "status": True,
  101. "embedding_model": app.state.RAG_EMBEDDING_MODEL,
  102. }
  103. class EmbeddingModelUpdateForm(BaseModel):
  104. embedding_model: str
  105. @app.post("/embedding/model/update")
  106. async def update_embedding_model(
  107. form_data: EmbeddingModelUpdateForm, user=Depends(get_admin_user)
  108. ):
  109. app.state.RAG_EMBEDDING_MODEL = form_data.embedding_model
  110. app.state.sentence_transformer_ef = (
  111. embedding_functions.SentenceTransformerEmbeddingFunction(
  112. model_name=app.state.RAG_EMBEDDING_MODEL,
  113. device=DEVICE_TYPE,
  114. )
  115. )
  116. return {
  117. "status": True,
  118. "embedding_model": app.state.RAG_EMBEDDING_MODEL,
  119. }
  120. @app.get("/config")
  121. async def get_rag_config(user=Depends(get_admin_user)):
  122. return {
  123. "status": True,
  124. "pdf_extract_images": app.state.PDF_EXTRACT_IMAGES,
  125. "chunk": {
  126. "chunk_size": app.state.CHUNK_SIZE,
  127. "chunk_overlap": app.state.CHUNK_OVERLAP,
  128. },
  129. }
  130. class ChunkParamUpdateForm(BaseModel):
  131. chunk_size: int
  132. chunk_overlap: int
  133. class ConfigUpdateForm(BaseModel):
  134. pdf_extract_images: bool
  135. chunk: ChunkParamUpdateForm
  136. @app.post("/config/update")
  137. async def update_rag_config(form_data: ConfigUpdateForm, user=Depends(get_admin_user)):
  138. app.state.PDF_EXTRACT_IMAGES = form_data.pdf_extract_images
  139. app.state.CHUNK_SIZE = form_data.chunk.chunk_size
  140. app.state.CHUNK_OVERLAP = form_data.chunk.chunk_overlap
  141. return {
  142. "status": True,
  143. "pdf_extract_images": app.state.PDF_EXTRACT_IMAGES,
  144. "chunk": {
  145. "chunk_size": app.state.CHUNK_SIZE,
  146. "chunk_overlap": app.state.CHUNK_OVERLAP,
  147. },
  148. }
  149. @app.get("/template")
  150. async def get_rag_template(user=Depends(get_current_user)):
  151. return {
  152. "status": True,
  153. "template": app.state.RAG_TEMPLATE,
  154. }
  155. @app.get("/query/settings")
  156. async def get_query_settings(user=Depends(get_admin_user)):
  157. return {
  158. "status": True,
  159. "template": app.state.RAG_TEMPLATE,
  160. "k": app.state.TOP_K,
  161. }
  162. class QuerySettingsForm(BaseModel):
  163. k: Optional[int] = None
  164. template: Optional[str] = None
  165. @app.post("/query/settings/update")
  166. async def update_query_settings(
  167. form_data: QuerySettingsForm, user=Depends(get_admin_user)
  168. ):
  169. app.state.RAG_TEMPLATE = form_data.template if form_data.template else RAG_TEMPLATE
  170. app.state.TOP_K = form_data.k if form_data.k else 4
  171. return {"status": True, "template": app.state.RAG_TEMPLATE}
  172. class QueryDocForm(BaseModel):
  173. collection_name: str
  174. query: str
  175. k: Optional[int] = None
  176. @app.post("/query/doc")
  177. def query_doc_handler(
  178. form_data: QueryDocForm,
  179. user=Depends(get_current_user),
  180. ):
  181. try:
  182. return query_doc(
  183. collection_name=form_data.collection_name,
  184. query=form_data.query,
  185. k=form_data.k if form_data.k else app.state.TOP_K,
  186. embedding_function=app.state.sentence_transformer_ef,
  187. )
  188. except Exception as e:
  189. log.exception(e)
  190. raise HTTPException(
  191. status_code=status.HTTP_400_BAD_REQUEST,
  192. detail=ERROR_MESSAGES.DEFAULT(e),
  193. )
  194. class QueryCollectionsForm(BaseModel):
  195. collection_names: List[str]
  196. query: str
  197. k: Optional[int] = None
  198. @app.post("/query/collection")
  199. def query_collection_handler(
  200. form_data: QueryCollectionsForm,
  201. user=Depends(get_current_user),
  202. ):
  203. return query_collection(
  204. collection_names=form_data.collection_names,
  205. query=form_data.query,
  206. k=form_data.k if form_data.k else app.state.TOP_K,
  207. embedding_function=app.state.sentence_transformer_ef,
  208. )
  209. @app.post("/web")
  210. def store_web(form_data: StoreWebForm, user=Depends(get_current_user)):
  211. # "https://www.gutenberg.org/files/1727/1727-h/1727-h.htm"
  212. try:
  213. loader = WebBaseLoader(form_data.url)
  214. data = loader.load()
  215. collection_name = form_data.collection_name
  216. if collection_name == "":
  217. collection_name = calculate_sha256_string(form_data.url)[:63]
  218. store_data_in_vector_db(data, collection_name, overwrite=True)
  219. return {
  220. "status": True,
  221. "collection_name": collection_name,
  222. "filename": form_data.url,
  223. }
  224. except Exception as e:
  225. log.exception(e)
  226. raise HTTPException(
  227. status_code=status.HTTP_400_BAD_REQUEST,
  228. detail=ERROR_MESSAGES.DEFAULT(e),
  229. )
  230. def store_data_in_vector_db(data, collection_name, overwrite: bool = False) -> bool:
  231. text_splitter = RecursiveCharacterTextSplitter(
  232. chunk_size=app.state.CHUNK_SIZE,
  233. chunk_overlap=app.state.CHUNK_OVERLAP,
  234. add_start_index=True,
  235. )
  236. docs = text_splitter.split_documents(data)
  237. if len(docs) > 0:
  238. return store_docs_in_vector_db(docs, collection_name, overwrite), None
  239. else:
  240. raise ValueError(ERROR_MESSAGES.EMPTY_CONTENT)
  241. def store_text_in_vector_db(
  242. text, metadata, collection_name, overwrite: bool = False
  243. ) -> bool:
  244. text_splitter = RecursiveCharacterTextSplitter(
  245. chunk_size=app.state.CHUNK_SIZE,
  246. chunk_overlap=app.state.CHUNK_OVERLAP,
  247. add_start_index=True,
  248. )
  249. docs = text_splitter.create_documents([text], metadatas=[metadata])
  250. return store_docs_in_vector_db(docs, collection_name, overwrite)
  251. def store_docs_in_vector_db(docs, collection_name, overwrite: bool = False) -> bool:
  252. texts = [doc.page_content for doc in docs]
  253. metadatas = [doc.metadata for doc in docs]
  254. try:
  255. if overwrite:
  256. for collection in CHROMA_CLIENT.list_collections():
  257. if collection_name == collection.name:
  258. log.info(f"deleting existing collection {collection_name}")
  259. CHROMA_CLIENT.delete_collection(name=collection_name)
  260. collection = CHROMA_CLIENT.create_collection(
  261. name=collection_name,
  262. embedding_function=app.state.sentence_transformer_ef,
  263. )
  264. collection.add(
  265. documents=texts, metadatas=metadatas, ids=[str(uuid.uuid1()) for _ in texts]
  266. )
  267. return True
  268. except Exception as e:
  269. log.exception(e)
  270. if e.__class__.__name__ == "UniqueConstraintError":
  271. return True
  272. return False
  273. def get_loader(filename: str, file_content_type: str, file_path: str):
  274. file_ext = filename.split(".")[-1].lower()
  275. known_type = True
  276. known_source_ext = [
  277. "go",
  278. "py",
  279. "java",
  280. "sh",
  281. "bat",
  282. "ps1",
  283. "cmd",
  284. "js",
  285. "ts",
  286. "css",
  287. "cpp",
  288. "hpp",
  289. "h",
  290. "c",
  291. "cs",
  292. "sql",
  293. "log",
  294. "ini",
  295. "pl",
  296. "pm",
  297. "r",
  298. "dart",
  299. "dockerfile",
  300. "env",
  301. "php",
  302. "hs",
  303. "hsc",
  304. "lua",
  305. "nginxconf",
  306. "conf",
  307. "m",
  308. "mm",
  309. "plsql",
  310. "perl",
  311. "rb",
  312. "rs",
  313. "db2",
  314. "scala",
  315. "bash",
  316. "swift",
  317. "vue",
  318. "svelte",
  319. ]
  320. if file_ext == "pdf":
  321. loader = PyPDFLoader(file_path, extract_images=app.state.PDF_EXTRACT_IMAGES)
  322. elif file_ext == "csv":
  323. loader = CSVLoader(file_path)
  324. elif file_ext == "rst":
  325. loader = UnstructuredRSTLoader(file_path, mode="elements")
  326. elif file_ext == "xml":
  327. loader = UnstructuredXMLLoader(file_path)
  328. elif file_ext in ["htm", "html"]:
  329. loader = BSHTMLLoader(file_path, open_encoding="unicode_escape")
  330. elif file_ext == "md":
  331. loader = UnstructuredMarkdownLoader(file_path)
  332. elif file_content_type == "application/epub+zip":
  333. loader = UnstructuredEPubLoader(file_path)
  334. elif (
  335. file_content_type
  336. == "application/vnd.openxmlformats-officedocument.wordprocessingml.document"
  337. or file_ext in ["doc", "docx"]
  338. ):
  339. loader = Docx2txtLoader(file_path)
  340. elif file_content_type in [
  341. "application/vnd.ms-excel",
  342. "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
  343. ] or file_ext in ["xls", "xlsx"]:
  344. loader = UnstructuredExcelLoader(file_path)
  345. elif file_ext in known_source_ext or (
  346. file_content_type and file_content_type.find("text/") >= 0
  347. ):
  348. loader = TextLoader(file_path, autodetect_encoding=True)
  349. else:
  350. loader = TextLoader(file_path, autodetect_encoding=True)
  351. known_type = False
  352. return loader, known_type
  353. @app.post("/doc")
  354. def store_doc(
  355. collection_name: Optional[str] = Form(None),
  356. file: UploadFile = File(...),
  357. user=Depends(get_current_user),
  358. ):
  359. # "https://www.gutenberg.org/files/1727/1727-h/1727-h.htm"
  360. log.info(f"file.content_type: {file.content_type}")
  361. try:
  362. is_valid_filename = True
  363. unsanitized_filename = file.filename
  364. if not unsanitized_filename.isascii():
  365. is_valid_filename = False
  366. unvalidated_file_path = f"{UPLOAD_DIR}/{unsanitized_filename}"
  367. dereferenced_file_path = str(Path(unvalidated_file_path).resolve(strict=False))
  368. if not dereferenced_file_path.startswith(UPLOAD_DIR):
  369. is_valid_filename = False
  370. if is_valid_filename:
  371. file_path = dereferenced_file_path
  372. else:
  373. raise HTTPException(
  374. status_code=status.HTTP_400_BAD_REQUEST,
  375. detail=ERROR_MESSAGES.DEFAULT(),
  376. )
  377. filename = file.filename
  378. contents = file.file.read()
  379. with open(file_path, "wb") as f:
  380. f.write(contents)
  381. f.close()
  382. f = open(file_path, "rb")
  383. if collection_name == None:
  384. collection_name = calculate_sha256(f)[:63]
  385. f.close()
  386. loader, known_type = get_loader(file.filename, file.content_type, file_path)
  387. data = loader.load()
  388. try:
  389. result = store_data_in_vector_db(data, collection_name)
  390. if result:
  391. return {
  392. "status": True,
  393. "collection_name": collection_name,
  394. "filename": filename,
  395. "known_type": known_type,
  396. }
  397. except Exception as e:
  398. raise HTTPException(
  399. status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
  400. detail=e,
  401. )
  402. except Exception as e:
  403. log.exception(e)
  404. if "No pandoc was found" in str(e):
  405. raise HTTPException(
  406. status_code=status.HTTP_400_BAD_REQUEST,
  407. detail=ERROR_MESSAGES.PANDOC_NOT_INSTALLED,
  408. )
  409. else:
  410. raise HTTPException(
  411. status_code=status.HTTP_400_BAD_REQUEST,
  412. detail=ERROR_MESSAGES.DEFAULT(e),
  413. )
  414. class TextRAGForm(BaseModel):
  415. name: str
  416. content: str
  417. collection_name: Optional[str] = None
  418. @app.post("/text")
  419. def store_text(
  420. form_data: TextRAGForm,
  421. user=Depends(get_current_user),
  422. ):
  423. collection_name = form_data.collection_name
  424. if collection_name == None:
  425. collection_name = calculate_sha256_string(form_data.content)
  426. result = store_text_in_vector_db(
  427. form_data.content,
  428. metadata={"name": form_data.name, "created_by": user.id},
  429. collection_name=collection_name,
  430. )
  431. if result:
  432. return {"status": True, "collection_name": collection_name}
  433. else:
  434. raise HTTPException(
  435. status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
  436. detail=ERROR_MESSAGES.DEFAULT(),
  437. )
  438. @app.get("/scan")
  439. def scan_docs_dir(user=Depends(get_admin_user)):
  440. for path in Path(DOCS_DIR).rglob("./**/*"):
  441. try:
  442. if path.is_file() and not path.name.startswith("."):
  443. tags = extract_folders_after_data_docs(path)
  444. filename = path.name
  445. file_content_type = mimetypes.guess_type(path)
  446. f = open(path, "rb")
  447. collection_name = calculate_sha256(f)[:63]
  448. f.close()
  449. loader, known_type = get_loader(
  450. filename, file_content_type[0], str(path)
  451. )
  452. data = loader.load()
  453. try:
  454. result = store_data_in_vector_db(data, collection_name)
  455. if result:
  456. sanitized_filename = sanitize_filename(filename)
  457. doc = Documents.get_doc_by_name(sanitized_filename)
  458. if doc == None:
  459. doc = Documents.insert_new_doc(
  460. user.id,
  461. DocumentForm(
  462. **{
  463. "name": sanitized_filename,
  464. "title": filename,
  465. "collection_name": collection_name,
  466. "filename": filename,
  467. "content": (
  468. json.dumps(
  469. {
  470. "tags": list(
  471. map(
  472. lambda name: {"name": name},
  473. tags,
  474. )
  475. )
  476. }
  477. )
  478. if len(tags)
  479. else "{}"
  480. ),
  481. }
  482. ),
  483. )
  484. except Exception as e:
  485. log.exception(e)
  486. pass
  487. except Exception as e:
  488. log.exception(e)
  489. return True
  490. @app.get("/reset/db")
  491. def reset_vector_db(user=Depends(get_admin_user)):
  492. CHROMA_CLIENT.reset()
  493. @app.get("/reset")
  494. def reset(user=Depends(get_admin_user)) -> bool:
  495. folder = f"{UPLOAD_DIR}"
  496. for filename in os.listdir(folder):
  497. file_path = os.path.join(folder, filename)
  498. try:
  499. if os.path.isfile(file_path) or os.path.islink(file_path):
  500. os.unlink(file_path)
  501. elif os.path.isdir(file_path):
  502. shutil.rmtree(file_path)
  503. except Exception as e:
  504. log.error("Failed to delete %s. Reason: %s" % (file_path, e))
  505. try:
  506. CHROMA_CLIENT.reset()
  507. except Exception as e:
  508. log.exception(e)
  509. return True