123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198 |
- from open_webui.utils.task import prompt_template, prompt_variables_template
- from open_webui.utils.misc import (
- add_or_update_system_message,
- )
- from typing import Callable, Optional
- # inplace function: form_data is modified
- def apply_model_system_prompt_to_body(
- params: dict, form_data: dict, metadata: Optional[dict] = None, user=None
- ) -> dict:
- system = params.get("system", None)
- if not system:
- return form_data
- # Metadata (WebUI Usage)
- if metadata:
- variables = metadata.get("variables", {})
- if variables:
- system = prompt_variables_template(system, variables)
- # Legacy (API Usage)
- if user:
- template_params = {
- "user_name": user.name,
- "user_location": user.info.get("location") if user.info else None,
- }
- else:
- template_params = {}
- system = prompt_template(system, **template_params)
- form_data["messages"] = add_or_update_system_message(
- system, form_data.get("messages", [])
- )
- return form_data
- # inplace function: form_data is modified
- def apply_model_params_to_body(
- params: dict, form_data: dict, mappings: dict[str, Callable]
- ) -> dict:
- if not params:
- return form_data
- for key, cast_func in mappings.items():
- if (value := params.get(key)) is not None:
- form_data[key] = cast_func(value)
- return form_data
- # inplace function: form_data is modified
- def apply_model_params_to_body_openai(params: dict, form_data: dict) -> dict:
- mappings = {
- "temperature": float,
- "top_p": float,
- "max_tokens": int,
- "frequency_penalty": float,
- "reasoning_effort": str,
- "seed": lambda x: x,
- "stop": lambda x: [bytes(s, "utf-8").decode("unicode_escape") for s in x],
- }
- return apply_model_params_to_body(params, form_data, mappings)
- def apply_model_params_to_body_ollama(params: dict, form_data: dict) -> dict:
- opts = [
- "temperature",
- "top_p",
- "seed",
- "mirostat",
- "mirostat_eta",
- "mirostat_tau",
- "num_ctx",
- "num_batch",
- "num_keep",
- "repeat_last_n",
- "tfs_z",
- "top_k",
- "min_p",
- "use_mmap",
- "use_mlock",
- "num_thread",
- "num_gpu",
- ]
- mappings = {i: lambda x: x for i in opts}
- form_data = apply_model_params_to_body(params, form_data, mappings)
- name_differences = {
- "max_tokens": "num_predict",
- "frequency_penalty": "repeat_penalty",
- }
- for key, value in name_differences.items():
- if (param := params.get(key, None)) is not None:
- form_data[value] = param
- return form_data
- def convert_messages_openai_to_ollama(messages: list[dict]) -> list[dict]:
- ollama_messages = []
- for message in messages:
- # Initialize the new message structure with the role
- new_message = {"role": message["role"]}
- content = message.get("content", [])
- # Check if the content is a string (just a simple message)
- if isinstance(content, str):
- # If the content is a string, it's pure text
- new_message["content"] = content
- else:
- # Otherwise, assume the content is a list of dicts, e.g., text followed by an image URL
- content_text = ""
- images = []
- # Iterate through the list of content items
- for item in content:
- # Check if it's a text type
- if item.get("type") == "text":
- content_text += item.get("text", "")
- # Check if it's an image URL type
- elif item.get("type") == "image_url":
- img_url = item.get("image_url", {}).get("url", "")
- if img_url:
- # If the image url starts with data:, it's a base64 image and should be trimmed
- if img_url.startswith("data:"):
- img_url = img_url.split(",")[-1]
- images.append(img_url)
- # Add content text (if any)
- if content_text:
- new_message["content"] = content_text.strip()
- # Add images (if any)
- if images:
- new_message["images"] = images
- # Append the new formatted message to the result
- ollama_messages.append(new_message)
- return ollama_messages
- def convert_payload_openai_to_ollama(openai_payload: dict) -> dict:
- """
- Converts a payload formatted for OpenAI's API to be compatible with Ollama's API endpoint for chat completions.
- Args:
- openai_payload (dict): The payload originally designed for OpenAI API usage.
- Returns:
- dict: A modified payload compatible with the Ollama API.
- """
- ollama_payload = {}
- # Mapping basic model and message details
- ollama_payload["model"] = openai_payload.get("model")
- ollama_payload["messages"] = convert_messages_openai_to_ollama(
- openai_payload.get("messages")
- )
- ollama_payload["stream"] = openai_payload.get("stream", False)
- if "tools" in openai_payload:
- ollama_payload["tools"] = openai_payload["tools"]
- if "format" in openai_payload:
- ollama_payload["format"] = openai_payload["format"]
- # If there are advanced parameters in the payload, format them in Ollama's options field
- ollama_options = {}
- if openai_payload.get("options"):
- ollama_payload["options"] = openai_payload["options"]
- ollama_options = openai_payload["options"]
- # Handle parameters which map directly
- for param in ["temperature", "top_p", "seed"]:
- if param in openai_payload:
- ollama_options[param] = openai_payload[param]
- # Mapping OpenAI's `max_tokens` -> Ollama's `num_predict`
- if "max_tokens" in openai_payload:
- ollama_options["num_predict"] = openai_payload["max_tokens"]
- # Add options to payload if any have been set
- if ollama_options:
- ollama_payload["options"] = ollama_options
- if "metadata" in openai_payload:
- ollama_payload["metadata"] = openai_payload["metadata"]
- return ollama_payload
|