utils.py 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342
  1. import os
  2. import re
  3. import logging
  4. from typing import List
  5. import requests
  6. from huggingface_hub import snapshot_download
  7. from apps.ollama.main import generate_ollama_embeddings, GenerateEmbeddingsForm
  8. from config import SRC_LOG_LEVELS, CHROMA_CLIENT
  9. log = logging.getLogger(__name__)
  10. log.setLevel(SRC_LOG_LEVELS["RAG"])
  11. def query_doc(collection_name: str, query: str, k: int, embedding_function):
  12. try:
  13. # if you use docker use the model from the environment variable
  14. collection = CHROMA_CLIENT.get_collection(
  15. name=collection_name,
  16. embedding_function=embedding_function,
  17. )
  18. result = collection.query(
  19. query_texts=[query],
  20. n_results=k,
  21. )
  22. return result
  23. except Exception as e:
  24. raise e
  25. def query_embeddings_doc(collection_name: str, query_embeddings, k: int):
  26. try:
  27. # if you use docker use the model from the environment variable
  28. log.info(f"query_embeddings_doc {query_embeddings}")
  29. collection = CHROMA_CLIENT.get_collection(
  30. name=collection_name,
  31. )
  32. result = collection.query(
  33. query_embeddings=[query_embeddings],
  34. n_results=k,
  35. )
  36. return result
  37. except Exception as e:
  38. raise e
  39. def merge_and_sort_query_results(query_results, k):
  40. # Initialize lists to store combined data
  41. combined_ids = []
  42. combined_distances = []
  43. combined_metadatas = []
  44. combined_documents = []
  45. # Combine data from each dictionary
  46. for data in query_results:
  47. combined_ids.extend(data["ids"][0])
  48. combined_distances.extend(data["distances"][0])
  49. combined_metadatas.extend(data["metadatas"][0])
  50. combined_documents.extend(data["documents"][0])
  51. # Create a list of tuples (distance, id, metadata, document)
  52. combined = list(
  53. zip(combined_distances, combined_ids, combined_metadatas, combined_documents)
  54. )
  55. # Sort the list based on distances
  56. combined.sort(key=lambda x: x[0])
  57. # Unzip the sorted list
  58. sorted_distances, sorted_ids, sorted_metadatas, sorted_documents = zip(*combined)
  59. # Slicing the lists to include only k elements
  60. sorted_distances = list(sorted_distances)[:k]
  61. sorted_ids = list(sorted_ids)[:k]
  62. sorted_metadatas = list(sorted_metadatas)[:k]
  63. sorted_documents = list(sorted_documents)[:k]
  64. # Create the output dictionary
  65. merged_query_results = {
  66. "ids": [sorted_ids],
  67. "distances": [sorted_distances],
  68. "metadatas": [sorted_metadatas],
  69. "documents": [sorted_documents],
  70. "embeddings": None,
  71. "uris": None,
  72. "data": None,
  73. }
  74. return merged_query_results
  75. def query_collection(
  76. collection_names: List[str], query: str, k: int, embedding_function
  77. ):
  78. results = []
  79. for collection_name in collection_names:
  80. try:
  81. # if you use docker use the model from the environment variable
  82. collection = CHROMA_CLIENT.get_collection(
  83. name=collection_name,
  84. embedding_function=embedding_function,
  85. )
  86. result = collection.query(
  87. query_texts=[query],
  88. n_results=k,
  89. )
  90. results.append(result)
  91. except:
  92. pass
  93. return merge_and_sort_query_results(results, k)
  94. def query_embeddings_collection(collection_names: List[str], query_embeddings, k: int):
  95. results = []
  96. log.info(f"query_embeddings_collection {query_embeddings}")
  97. for collection_name in collection_names:
  98. try:
  99. collection = CHROMA_CLIENT.get_collection(name=collection_name)
  100. result = collection.query(
  101. query_embeddings=[query_embeddings],
  102. n_results=k,
  103. )
  104. results.append(result)
  105. except:
  106. pass
  107. return merge_and_sort_query_results(results, k)
  108. def rag_template(template: str, context: str, query: str):
  109. template = template.replace("[context]", context)
  110. template = template.replace("[query]", query)
  111. return template
  112. def rag_messages(
  113. docs,
  114. messages,
  115. template,
  116. k,
  117. embedding_engine,
  118. embedding_model,
  119. embedding_function,
  120. openai_key,
  121. openai_url,
  122. ):
  123. log.debug(f"docs: {docs}")
  124. last_user_message_idx = None
  125. for i in range(len(messages) - 1, -1, -1):
  126. if messages[i]["role"] == "user":
  127. last_user_message_idx = i
  128. break
  129. user_message = messages[last_user_message_idx]
  130. if isinstance(user_message["content"], list):
  131. # Handle list content input
  132. content_type = "list"
  133. query = ""
  134. for content_item in user_message["content"]:
  135. if content_item["type"] == "text":
  136. query = content_item["text"]
  137. break
  138. elif isinstance(user_message["content"], str):
  139. # Handle text content input
  140. content_type = "text"
  141. query = user_message["content"]
  142. else:
  143. # Fallback in case the input does not match expected types
  144. content_type = None
  145. query = ""
  146. relevant_contexts = []
  147. for doc in docs:
  148. context = None
  149. try:
  150. if doc["type"] == "text":
  151. context = doc["content"]
  152. else:
  153. if embedding_engine == "":
  154. if doc["type"] == "collection":
  155. context = query_collection(
  156. collection_names=doc["collection_names"],
  157. query=query,
  158. k=k,
  159. embedding_function=embedding_function,
  160. )
  161. else:
  162. context = query_doc(
  163. collection_name=doc["collection_name"],
  164. query=query,
  165. k=k,
  166. embedding_function=embedding_function,
  167. )
  168. else:
  169. if embedding_engine == "ollama":
  170. query_embeddings = generate_ollama_embeddings(
  171. GenerateEmbeddingsForm(
  172. **{
  173. "model": embedding_model,
  174. "prompt": query,
  175. }
  176. )
  177. )
  178. elif embedding_engine == "openai":
  179. query_embeddings = generate_openai_embeddings(
  180. model=embedding_model,
  181. text=query,
  182. key=openai_key,
  183. url=openai_url,
  184. )
  185. if doc["type"] == "collection":
  186. context = query_embeddings_collection(
  187. collection_names=doc["collection_names"],
  188. query_embeddings=query_embeddings,
  189. k=k,
  190. )
  191. else:
  192. context = query_embeddings_doc(
  193. collection_name=doc["collection_name"],
  194. query_embeddings=query_embeddings,
  195. k=k,
  196. )
  197. except Exception as e:
  198. log.exception(e)
  199. context = None
  200. relevant_contexts.append(context)
  201. log.debug(f"relevant_contexts: {relevant_contexts}")
  202. context_string = ""
  203. for context in relevant_contexts:
  204. if context:
  205. context_string += " ".join(context["documents"][0]) + "\n"
  206. ra_content = rag_template(
  207. template=template,
  208. context=context_string,
  209. query=query,
  210. )
  211. if content_type == "list":
  212. new_content = []
  213. for content_item in user_message["content"]:
  214. if content_item["type"] == "text":
  215. # Update the text item's content with ra_content
  216. new_content.append({"type": "text", "text": ra_content})
  217. else:
  218. # Keep other types of content as they are
  219. new_content.append(content_item)
  220. new_user_message = {**user_message, "content": new_content}
  221. else:
  222. new_user_message = {
  223. **user_message,
  224. "content": ra_content,
  225. }
  226. messages[last_user_message_idx] = new_user_message
  227. return messages
  228. def get_embedding_model_path(
  229. embedding_model: str, update_embedding_model: bool = False
  230. ):
  231. # Construct huggingface_hub kwargs with local_files_only to return the snapshot path
  232. cache_dir = os.getenv("SENTENCE_TRANSFORMERS_HOME")
  233. local_files_only = not update_embedding_model
  234. snapshot_kwargs = {
  235. "cache_dir": cache_dir,
  236. "local_files_only": local_files_only,
  237. }
  238. log.debug(f"embedding_model: {embedding_model}")
  239. log.debug(f"snapshot_kwargs: {snapshot_kwargs}")
  240. # Inspiration from upstream sentence_transformers
  241. if (
  242. os.path.exists(embedding_model)
  243. or ("\\" in embedding_model or embedding_model.count("/") > 1)
  244. and local_files_only
  245. ):
  246. # If fully qualified path exists, return input, else set repo_id
  247. return embedding_model
  248. elif "/" not in embedding_model:
  249. # Set valid repo_id for model short-name
  250. embedding_model = "sentence-transformers" + "/" + embedding_model
  251. snapshot_kwargs["repo_id"] = embedding_model
  252. # Attempt to query the huggingface_hub library to determine the local path and/or to update
  253. try:
  254. embedding_model_repo_path = snapshot_download(**snapshot_kwargs)
  255. log.debug(f"embedding_model_repo_path: {embedding_model_repo_path}")
  256. return embedding_model_repo_path
  257. except Exception as e:
  258. log.exception(f"Cannot determine embedding model snapshot path: {e}")
  259. return embedding_model
  260. def generate_openai_embeddings(
  261. model: str, text: str, key: str, url: str = "https://api.openai.com"
  262. ):
  263. try:
  264. r = requests.post(
  265. f"{url}/v1/embeddings",
  266. headers={
  267. "Content-Type": "application/json",
  268. "Authorization": f"Bearer {key}",
  269. },
  270. json={"input": text, "model": model},
  271. )
  272. r.raise_for_status()
  273. data = r.json()
  274. if "data" in data:
  275. return data["data"][0]["embedding"]
  276. else:
  277. raise "Something went wrong :/"
  278. except Exception as e:
  279. print(e)
  280. return None