qdrant.py 6.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172
  1. from typing import Optional
  2. from qdrant_client import QdrantClient as Qclient
  3. from qdrant_client.http.models import PointStruct
  4. from qdrant_client.models import models
  5. from open_webui.apps.retrieval.vector.main import VectorItem, SearchResult, GetResult
  6. from open_webui.config import QDRANT_URI
  7. class QdrantClient:
  8. def __init__(self):
  9. self.collection_prefix = "open-webui"
  10. self.QDRANT_URI = QDRANT_URI
  11. self.client = Qclient(url=self.QDRANT_URI) if self.QDRANT_URI else None
  12. def _result_to_get_result(self, points) -> GetResult:
  13. ids = []
  14. documents = []
  15. metadatas = []
  16. for point in points:
  17. payload = point.payload
  18. ids.append(point.id)
  19. documents.append(payload["text"])
  20. metadatas.append(payload["metadata"])
  21. return GetResult(
  22. **{
  23. "ids": [ids],
  24. "documents": [documents],
  25. "metadatas": [metadatas],
  26. }
  27. )
  28. def _create_collection(self, collection_name: str, dimension: int):
  29. collection_name_with_prefix = f"{self.collection_prefix}_{collection_name}"
  30. self.client.create_collection(
  31. collection_name=collection_name_with_prefix,
  32. vectors_config=models.VectorParams(size=dimension, distance=models.Distance.COSINE),
  33. )
  34. print(f"collection {collection_name_with_prefix} successfully created!")
  35. def _create_collection_if_not_exists(self, collection_name, dimension):
  36. if not self.has_collection(
  37. collection_name=collection_name
  38. ):
  39. self._create_collection(
  40. collection_name=collection_name, dimension=dimension
  41. )
  42. def has_collection(self, collection_name: str) -> bool:
  43. return self.client.collection_exists(f"{self.collection_prefix}_{collection_name}")
  44. def delete_collection(self, collection_name: str):
  45. return self.client.delete_collection(collection_name=f"{self.collection_prefix}_{collection_name}")
  46. def search(
  47. self, collection_name: str, vectors: list[list[float | int]], limit: int
  48. ) -> Optional[SearchResult]:
  49. # Search for the nearest neighbor items based on the vectors and return 'limit' number of results.
  50. query_response = self.client.query_points(
  51. collection_name=f"{self.collection_prefix}_{collection_name}",
  52. query=vectors[0],
  53. limit=limit,
  54. )
  55. get_result = self._result_to_get_result(query_response.points)
  56. return SearchResult(
  57. ids=get_result.ids,
  58. documents=get_result.documents,
  59. metadatas=get_result.metadatas,
  60. distances=[[point.score for point in query_response.points]]
  61. )
  62. def query(self, collection_name: str, filter: dict, limit: Optional[int] = None):
  63. # Construct the filter string for querying
  64. if not self.has_collection(collection_name):
  65. return None
  66. try:
  67. field_conditions = []
  68. for key, value in filter.items():
  69. field_conditions.append(
  70. models.FieldCondition(key=f"metadata.{key}", match=models.MatchValue(value=value)))
  71. points = self.client.query_points(
  72. collection_name=f"{self.collection_prefix}_{collection_name}",
  73. query_filter=models.Filter(should=field_conditions),
  74. limit=limit,
  75. )
  76. return self._result_to_get_result(points.points)
  77. except Exception as e:
  78. print(e)
  79. return None
  80. def get(self, collection_name: str) -> Optional[GetResult]:
  81. # Get all the items in the collection.
  82. points = self.client.query_points(
  83. collection_name=f"{self.collection_prefix}_{collection_name}",
  84. limit=10000000 # default is 10
  85. )
  86. return self._result_to_get_result(points.points)
  87. def insert(self, collection_name: str, items: list[VectorItem]):
  88. # Insert the items into the collection, if the collection does not exist, it will be created.
  89. self._create_collection_if_not_exists(collection_name, len(items[0]["vector"]))
  90. points = self.create_points(items)
  91. self.client.upload_points(f"{self.collection_prefix}_{collection_name}", points)
  92. def upsert(self, collection_name: str, items: list[VectorItem]):
  93. # Update the items in the collection, if the items are not present, insert them. If the collection does not exist, it will be created.
  94. self._create_collection_if_not_exists(collection_name, len(items[0]["vector"]))
  95. points = self.create_points(items)
  96. return self.client.upsert(f"{self.collection_prefix}_{collection_name}", points)
  97. def delete(
  98. self,
  99. collection_name: str,
  100. ids: Optional[list[str]] = None,
  101. filter: Optional[dict] = None,
  102. ):
  103. # Delete the items from the collection based on the ids.
  104. field_conditions = []
  105. if ids:
  106. for id_value in ids:
  107. field_conditions.append(
  108. models.FieldCondition(
  109. key="metadata.id",
  110. match=models.MatchValue(value=id_value),
  111. ),
  112. ),
  113. elif filter:
  114. for key, value in filter.items():
  115. field_conditions.append(
  116. models.FieldCondition(
  117. key=f"metadata.{key}",
  118. match=models.MatchValue(value=value),
  119. ),
  120. ),
  121. return self.client.delete(
  122. collection_name=f"{self.collection_prefix}_{collection_name}",
  123. points_selector=models.FilterSelector(
  124. filter=models.Filter(
  125. must=field_conditions
  126. )
  127. ),
  128. )
  129. def reset(self):
  130. # Resets the database. This will delete all collections and item entries.
  131. collection_names = self.client.get_collections().collections
  132. for collection_name in collection_names:
  133. if collection_name.name.startswith(self.collection_prefix):
  134. self.client.delete_collection(collection_name=collection_name.name)
  135. def create_points(self, items: list[VectorItem]):
  136. points = []
  137. for idx, item in enumerate(items):
  138. points.append(
  139. PointStruct(
  140. id=item["id"],
  141. vector=item["vector"],
  142. payload={
  143. "text": item["text"],
  144. "metadata": item["metadata"]
  145. },
  146. )
  147. )
  148. return points