main.py 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398
  1. from fastapi import (
  2. FastAPI,
  3. Depends,
  4. HTTPException,
  5. status,
  6. UploadFile,
  7. File,
  8. Form,
  9. )
  10. from fastapi.middleware.cors import CORSMiddleware
  11. import os, shutil
  12. from typing import List
  13. from chromadb.utils import embedding_functions
  14. from langchain_community.document_loaders import (
  15. WebBaseLoader,
  16. TextLoader,
  17. PyPDFLoader,
  18. CSVLoader,
  19. Docx2txtLoader,
  20. UnstructuredEPubLoader,
  21. UnstructuredWordDocumentLoader,
  22. UnstructuredMarkdownLoader,
  23. UnstructuredXMLLoader,
  24. UnstructuredRSTLoader,
  25. UnstructuredExcelLoader,
  26. )
  27. from langchain.text_splitter import RecursiveCharacterTextSplitter
  28. from pydantic import BaseModel
  29. from typing import Optional
  30. import uuid
  31. from utils.misc import calculate_sha256, calculate_sha256_string
  32. from utils.utils import get_current_user, get_admin_user
  33. from config import UPLOAD_DIR, SENTENCE_TRANSFORMER_EMBED_MODEL, CHROMA_CLIENT, CHUNK_SIZE, CHUNK_OVERLAP
  34. from constants import ERROR_MESSAGES
  35. sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFunction(model_name=SENTENCE_TRANSFORMER_EMBED_MODEL)
  36. app = FastAPI()
  37. origins = ["*"]
  38. app.add_middleware(
  39. CORSMiddleware,
  40. allow_origins=origins,
  41. allow_credentials=True,
  42. allow_methods=["*"],
  43. allow_headers=["*"],
  44. )
  45. class CollectionNameForm(BaseModel):
  46. collection_name: Optional[str] = "test"
  47. class StoreWebForm(CollectionNameForm):
  48. url: str
  49. def store_data_in_vector_db(data, collection_name) -> bool:
  50. text_splitter = RecursiveCharacterTextSplitter(
  51. chunk_size=CHUNK_SIZE, chunk_overlap=CHUNK_OVERLAP
  52. )
  53. docs = text_splitter.split_documents(data)
  54. texts = [doc.page_content for doc in docs]
  55. metadatas = [doc.metadata for doc in docs]
  56. try:
  57. if 'DOCKER_SENTENCE_TRANSFORMER_EMBED_MODEL' in os.environ:
  58. # if you use docker use the model from the environment variable
  59. collection = CHROMA_CLIENT.create_collection(name=collection_name, embedding_function=sentence_transformer_ef)
  60. else:
  61. # for local development use the default model
  62. collection = CHROMA_CLIENT.create_collection(name=collection_name)
  63. collection.add(
  64. documents=texts, metadatas=metadatas, ids=[str(uuid.uuid1()) for _ in texts]
  65. )
  66. return True
  67. except Exception as e:
  68. print(e)
  69. if e.__class__.__name__ == "UniqueConstraintError":
  70. return True
  71. return False
  72. @app.get("/")
  73. async def get_status():
  74. return {"status": True}
  75. class QueryDocForm(BaseModel):
  76. collection_name: str
  77. query: str
  78. k: Optional[int] = 4
  79. @app.post("/query/doc")
  80. def query_doc(
  81. form_data: QueryDocForm,
  82. user=Depends(get_current_user),
  83. ):
  84. try:
  85. if 'DOCKER_SENTENCE_TRANSFORMER_EMBED_MODEL' in os.environ:
  86. # if you use docker use the model from the environment variable
  87. collection = CHROMA_CLIENT.get_collection(
  88. name=form_data.collection_name,
  89. embedding_function=sentence_transformer_ef,
  90. )
  91. else:
  92. # for local development use the default model
  93. collection = CHROMA_CLIENT.get_collection(
  94. name=form_data.collection_name,
  95. )
  96. result = collection.query(query_texts=[form_data.query], n_results=form_data.k)
  97. return result
  98. except Exception as e:
  99. print(e)
  100. raise HTTPException(
  101. status_code=status.HTTP_400_BAD_REQUEST,
  102. detail=ERROR_MESSAGES.DEFAULT(e),
  103. )
  104. class QueryCollectionsForm(BaseModel):
  105. collection_names: List[str]
  106. query: str
  107. k: Optional[int] = 4
  108. def merge_and_sort_query_results(query_results, k):
  109. # Initialize lists to store combined data
  110. combined_ids = []
  111. combined_distances = []
  112. combined_metadatas = []
  113. combined_documents = []
  114. # Combine data from each dictionary
  115. for data in query_results:
  116. combined_ids.extend(data["ids"][0])
  117. combined_distances.extend(data["distances"][0])
  118. combined_metadatas.extend(data["metadatas"][0])
  119. combined_documents.extend(data["documents"][0])
  120. # Create a list of tuples (distance, id, metadata, document)
  121. combined = list(
  122. zip(combined_distances, combined_ids, combined_metadatas, combined_documents)
  123. )
  124. # Sort the list based on distances
  125. combined.sort(key=lambda x: x[0])
  126. # Unzip the sorted list
  127. sorted_distances, sorted_ids, sorted_metadatas, sorted_documents = zip(*combined)
  128. # Slicing the lists to include only k elements
  129. sorted_distances = list(sorted_distances)[:k]
  130. sorted_ids = list(sorted_ids)[:k]
  131. sorted_metadatas = list(sorted_metadatas)[:k]
  132. sorted_documents = list(sorted_documents)[:k]
  133. # Create the output dictionary
  134. merged_query_results = {
  135. "ids": [sorted_ids],
  136. "distances": [sorted_distances],
  137. "metadatas": [sorted_metadatas],
  138. "documents": [sorted_documents],
  139. "embeddings": None,
  140. "uris": None,
  141. "data": None,
  142. }
  143. return merged_query_results
  144. @app.post("/query/collection")
  145. def query_collection(
  146. form_data: QueryCollectionsForm,
  147. user=Depends(get_current_user),
  148. ):
  149. results = []
  150. for collection_name in form_data.collection_names:
  151. try:
  152. if 'DOCKER_SENTENCE_TRANSFORMER_EMBED_MODEL' in os.environ:
  153. # if you use docker use the model from the environment variable
  154. collection = CHROMA_CLIENT.get_collection(
  155. name=collection_name,
  156. embedding_function=sentence_transformer_ef,
  157. )
  158. else:
  159. # for local development use the default model
  160. collection = CHROMA_CLIENT.get_collection(
  161. name=collection_name,
  162. )
  163. result = collection.query(
  164. query_texts=[form_data.query], n_results=form_data.k
  165. )
  166. results.append(result)
  167. except:
  168. pass
  169. return merge_and_sort_query_results(results, form_data.k)
  170. @app.post("/web")
  171. def store_web(form_data: StoreWebForm, user=Depends(get_current_user)):
  172. # "https://www.gutenberg.org/files/1727/1727-h/1727-h.htm"
  173. try:
  174. loader = WebBaseLoader(form_data.url)
  175. data = loader.load()
  176. collection_name = form_data.collection_name
  177. if collection_name == "":
  178. collection_name = calculate_sha256_string(form_data.url)[:63]
  179. store_data_in_vector_db(data, collection_name)
  180. return {
  181. "status": True,
  182. "collection_name": collection_name,
  183. "filename": form_data.url,
  184. }
  185. except Exception as e:
  186. print(e)
  187. raise HTTPException(
  188. status_code=status.HTTP_400_BAD_REQUEST,
  189. detail=ERROR_MESSAGES.DEFAULT(e),
  190. )
  191. def get_loader(file, file_path):
  192. file_ext = file.filename.split(".")[-1].lower()
  193. known_type = True
  194. known_source_ext = [
  195. "go",
  196. "py",
  197. "java",
  198. "sh",
  199. "bat",
  200. "ps1",
  201. "cmd",
  202. "js",
  203. "ts",
  204. "css",
  205. "cpp",
  206. "hpp",
  207. "h",
  208. "c",
  209. "cs",
  210. "sql",
  211. "log",
  212. "ini",
  213. "pl",
  214. "pm",
  215. "r",
  216. "dart",
  217. "dockerfile",
  218. "env",
  219. "php",
  220. "hs",
  221. "hsc",
  222. "lua",
  223. "nginxconf",
  224. "conf",
  225. "m",
  226. "mm",
  227. "plsql",
  228. "perl",
  229. "rb",
  230. "rs",
  231. "db2",
  232. "scala",
  233. "bash",
  234. "swift",
  235. "vue",
  236. "svelte",
  237. ]
  238. if file_ext == "pdf":
  239. loader = PyPDFLoader(file_path)
  240. elif file_ext == "csv":
  241. loader = CSVLoader(file_path)
  242. elif file_ext == "rst":
  243. loader = UnstructuredRSTLoader(file_path, mode="elements")
  244. elif file_ext == "xml":
  245. loader = UnstructuredXMLLoader(file_path)
  246. elif file_ext == "md":
  247. loader = UnstructuredMarkdownLoader(file_path)
  248. elif file.content_type == "application/epub+zip":
  249. loader = UnstructuredEPubLoader(file_path)
  250. elif (
  251. file.content_type
  252. == "application/vnd.openxmlformats-officedocument.wordprocessingml.document"
  253. or file_ext in ["doc", "docx"]
  254. ):
  255. loader = Docx2txtLoader(file_path)
  256. elif file.content_type in [
  257. "application/vnd.ms-excel",
  258. "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
  259. ] or file_ext in ["xls", "xlsx"]:
  260. loader = UnstructuredExcelLoader(file_path)
  261. elif file_ext in known_source_ext or file.content_type.find("text/") >= 0:
  262. loader = TextLoader(file_path)
  263. else:
  264. loader = TextLoader(file_path)
  265. known_type = False
  266. return loader, known_type
  267. @app.post("/doc")
  268. def store_doc(
  269. collection_name: Optional[str] = Form(None),
  270. file: UploadFile = File(...),
  271. user=Depends(get_current_user),
  272. ):
  273. # "https://www.gutenberg.org/files/1727/1727-h/1727-h.htm"
  274. print(file.content_type)
  275. try:
  276. filename = file.filename
  277. file_path = f"{UPLOAD_DIR}/{filename}"
  278. contents = file.file.read()
  279. with open(file_path, "wb") as f:
  280. f.write(contents)
  281. f.close()
  282. f = open(file_path, "rb")
  283. if collection_name == None:
  284. collection_name = calculate_sha256(f)[:63]
  285. f.close()
  286. loader, known_type = get_loader(file, file_path)
  287. data = loader.load()
  288. result = store_data_in_vector_db(data, collection_name)
  289. if result:
  290. return {
  291. "status": True,
  292. "collection_name": collection_name,
  293. "filename": filename,
  294. "known_type": known_type,
  295. }
  296. else:
  297. raise HTTPException(
  298. status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
  299. detail=ERROR_MESSAGES.DEFAULT(),
  300. )
  301. except Exception as e:
  302. print(e)
  303. if "No pandoc was found" in str(e):
  304. raise HTTPException(
  305. status_code=status.HTTP_400_BAD_REQUEST,
  306. detail=ERROR_MESSAGES.PANDOC_NOT_INSTALLED,
  307. )
  308. else:
  309. raise HTTPException(
  310. status_code=status.HTTP_400_BAD_REQUEST,
  311. detail=ERROR_MESSAGES.DEFAULT(e),
  312. )
  313. @app.get("/reset/db")
  314. def reset_vector_db(user=Depends(get_admin_user)):
  315. CHROMA_CLIENT.reset()
  316. @app.get("/reset")
  317. def reset(user=Depends(get_admin_user)) -> bool:
  318. folder = f"{UPLOAD_DIR}"
  319. for filename in os.listdir(folder):
  320. file_path = os.path.join(folder, filename)
  321. try:
  322. if os.path.isfile(file_path) or os.path.islink(file_path):
  323. os.unlink(file_path)
  324. elif os.path.isdir(file_path):
  325. shutil.rmtree(file_path)
  326. except Exception as e:
  327. print("Failed to delete %s. Reason: %s" % (file_path, e))
  328. try:
  329. CHROMA_CLIENT.reset()
  330. except Exception as e:
  331. print(e)
  332. return True