utils.py 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436
  1. import logging
  2. import requests
  3. from typing import List
  4. from apps.ollama.main import (
  5. generate_ollama_embeddings,
  6. GenerateEmbeddingsForm,
  7. )
  8. from langchain_core.documents import Document
  9. from langchain_community.retrievers import BM25Retriever
  10. from langchain.retrievers import (
  11. ContextualCompressionRetriever,
  12. EnsembleRetriever,
  13. )
  14. from config import SRC_LOG_LEVELS, CHROMA_CLIENT
  15. log = logging.getLogger(__name__)
  16. log.setLevel(SRC_LOG_LEVELS["RAG"])
  17. def query_embeddings_doc(
  18. collection_name: str,
  19. query: str,
  20. k: int,
  21. r: float,
  22. embeddings_function,
  23. reranking_function,
  24. ):
  25. try:
  26. # if you use docker use the model from the environment variable
  27. collection = CHROMA_CLIENT.get_collection(name=collection_name)
  28. documents = collection.get() # get all documents
  29. bm25_retriever = BM25Retriever.from_texts(
  30. texts=documents.get("documents"),
  31. metadatas=documents.get("metadatas"),
  32. )
  33. bm25_retriever.k = k
  34. chroma_retriever = ChromaRetriever(
  35. collection=collection,
  36. embeddings_function=embeddings_function,
  37. top_n=k,
  38. )
  39. ensemble_retriever = EnsembleRetriever(
  40. retrievers=[bm25_retriever, chroma_retriever], weights=[0.5, 0.5]
  41. )
  42. compressor = RerankCompressor(
  43. embeddings_function=embeddings_function,
  44. reranking_function=reranking_function,
  45. r_score=r,
  46. top_n=k,
  47. )
  48. compression_retriever = ContextualCompressionRetriever(
  49. base_compressor=compressor, base_retriever=ensemble_retriever
  50. )
  51. result = compression_retriever.invoke(query)
  52. result = {
  53. "distances": [[d.metadata.get("score") for d in result]],
  54. "documents": [[d.page_content for d in result]],
  55. "metadatas": [[d.metadata for d in result]],
  56. }
  57. return result
  58. except Exception as e:
  59. raise e
  60. def merge_and_sort_query_results(query_results, k):
  61. # Initialize lists to store combined data
  62. combined_distances = []
  63. combined_documents = []
  64. combined_metadatas = []
  65. for data in query_results:
  66. combined_distances.extend(data["distances"][0])
  67. combined_documents.extend(data["documents"][0])
  68. combined_metadatas.extend(data["metadatas"][0])
  69. # Create a list of tuples (distance, document, metadata)
  70. combined = list(zip(combined_distances, combined_documents, combined_metadatas))
  71. # Sort the list based on distances
  72. combined.sort(key=lambda x: x[0])
  73. # We don't have anything :-(
  74. if not combined:
  75. sorted_distances = []
  76. sorted_documents = []
  77. sorted_metadatas = []
  78. else:
  79. # Unzip the sorted list
  80. sorted_distances, sorted_documents, sorted_metadatas = zip(*combined)
  81. # Slicing the lists to include only k elements
  82. sorted_distances = list(sorted_distances)[:k]
  83. sorted_documents = list(sorted_documents)[:k]
  84. sorted_metadatas = list(sorted_metadatas)[:k]
  85. # Create the output dictionary
  86. result = {
  87. "distances": [sorted_distances],
  88. "documents": [sorted_documents],
  89. "metadatas": [sorted_metadatas],
  90. }
  91. return result
  92. def query_embeddings_collection(
  93. collection_names: List[str],
  94. query: str,
  95. k: int,
  96. r: float,
  97. embeddings_function,
  98. reranking_function,
  99. ):
  100. results = []
  101. for collection_name in collection_names:
  102. try:
  103. result = query_embeddings_doc(
  104. collection_name=collection_name,
  105. query=query,
  106. k=k,
  107. r=r,
  108. embeddings_function=embeddings_function,
  109. reranking_function=reranking_function,
  110. )
  111. results.append(result)
  112. except:
  113. pass
  114. return merge_and_sort_query_results(results, k)
  115. def rag_template(template: str, context: str, query: str):
  116. template = template.replace("[context]", context)
  117. template = template.replace("[query]", query)
  118. return template
  119. def query_embeddings_function(
  120. embedding_engine,
  121. embedding_model,
  122. embedding_function,
  123. openai_key,
  124. openai_url,
  125. ):
  126. if embedding_engine == "":
  127. return lambda query: embedding_function.encode(query).tolist()
  128. elif embedding_engine in ["ollama", "openai"]:
  129. if embedding_engine == "ollama":
  130. func = lambda query: generate_ollama_embeddings(
  131. GenerateEmbeddingsForm(
  132. **{
  133. "model": embedding_model,
  134. "prompt": query,
  135. }
  136. )
  137. )
  138. elif embedding_engine == "openai":
  139. func = lambda query: generate_openai_embeddings(
  140. model=embedding_model,
  141. text=query,
  142. key=openai_key,
  143. url=openai_url,
  144. )
  145. def generate_multiple(query, f):
  146. if isinstance(query, list):
  147. return [f(q) for q in query]
  148. else:
  149. return f(query)
  150. return lambda query: generate_multiple(query, func)
  151. def rag_messages(
  152. docs,
  153. messages,
  154. template,
  155. k,
  156. r,
  157. embedding_engine,
  158. embedding_model,
  159. embedding_function,
  160. reranking_function,
  161. openai_key,
  162. openai_url,
  163. ):
  164. log.debug(
  165. f"docs: {docs} {messages} {embedding_engine} {embedding_model} {embedding_function} {reranking_function} {openai_key} {openai_url}"
  166. )
  167. last_user_message_idx = None
  168. for i in range(len(messages) - 1, -1, -1):
  169. if messages[i]["role"] == "user":
  170. last_user_message_idx = i
  171. break
  172. user_message = messages[last_user_message_idx]
  173. if isinstance(user_message["content"], list):
  174. # Handle list content input
  175. content_type = "list"
  176. query = ""
  177. for content_item in user_message["content"]:
  178. if content_item["type"] == "text":
  179. query = content_item["text"]
  180. break
  181. elif isinstance(user_message["content"], str):
  182. # Handle text content input
  183. content_type = "text"
  184. query = user_message["content"]
  185. else:
  186. # Fallback in case the input does not match expected types
  187. content_type = None
  188. query = ""
  189. embeddings_function = query_embeddings_function(
  190. embedding_engine,
  191. embedding_model,
  192. embedding_function,
  193. openai_key,
  194. openai_url,
  195. )
  196. extracted_collections = []
  197. relevant_contexts = []
  198. for doc in docs:
  199. context = None
  200. collection = doc.get("collection_name")
  201. if collection:
  202. collection = [collection]
  203. else:
  204. collection = doc.get("collection_names", [])
  205. collection = set(collection).difference(extracted_collections)
  206. if not collection:
  207. log.debug(f"skipping {doc} as it has already been extracted")
  208. continue
  209. try:
  210. if doc["type"] == "text":
  211. context = doc["content"]
  212. elif doc["type"] == "collection":
  213. context = query_embeddings_collection(
  214. collection_names=doc["collection_names"],
  215. query=query,
  216. k=k,
  217. r=r,
  218. embeddings_function=embeddings_function,
  219. reranking_function=reranking_function,
  220. )
  221. else:
  222. context = query_embeddings_doc(
  223. collection_name=doc["collection_name"],
  224. query=query,
  225. k=k,
  226. r=r,
  227. embeddings_function=embeddings_function,
  228. reranking_function=reranking_function,
  229. )
  230. except Exception as e:
  231. log.exception(e)
  232. context = None
  233. if context:
  234. relevant_contexts.append(context)
  235. extracted_collections.extend(collection)
  236. log.debug(f"relevant_contexts: {relevant_contexts}")
  237. context_string = ""
  238. for context in relevant_contexts:
  239. items = context["documents"][0]
  240. context_string += "\n\n".join(items)
  241. context_string = context_string.strip()
  242. ra_content = rag_template(
  243. template=template,
  244. context=context_string,
  245. query=query,
  246. )
  247. log.debug(f"ra_content: {ra_content}")
  248. if content_type == "list":
  249. new_content = []
  250. for content_item in user_message["content"]:
  251. if content_item["type"] == "text":
  252. # Update the text item's content with ra_content
  253. new_content.append({"type": "text", "text": ra_content})
  254. else:
  255. # Keep other types of content as they are
  256. new_content.append(content_item)
  257. new_user_message = {**user_message, "content": new_content}
  258. else:
  259. new_user_message = {
  260. **user_message,
  261. "content": ra_content,
  262. }
  263. messages[last_user_message_idx] = new_user_message
  264. return messages
  265. def generate_openai_embeddings(
  266. model: str, text: str, key: str, url: str = "https://api.openai.com/v1"
  267. ):
  268. try:
  269. r = requests.post(
  270. f"{url}/embeddings",
  271. headers={
  272. "Content-Type": "application/json",
  273. "Authorization": f"Bearer {key}",
  274. },
  275. json={"input": text, "model": model},
  276. )
  277. r.raise_for_status()
  278. data = r.json()
  279. if "data" in data:
  280. return data["data"][0]["embedding"]
  281. else:
  282. raise "Something went wrong :/"
  283. except Exception as e:
  284. print(e)
  285. return None
  286. from typing import Any
  287. from langchain_core.retrievers import BaseRetriever
  288. from langchain_core.callbacks import CallbackManagerForRetrieverRun
  289. class ChromaRetriever(BaseRetriever):
  290. collection: Any
  291. embeddings_function: Any
  292. top_n: int
  293. def _get_relevant_documents(
  294. self,
  295. query: str,
  296. *,
  297. run_manager: CallbackManagerForRetrieverRun,
  298. ) -> List[Document]:
  299. query_embeddings = self.embeddings_function(query)
  300. results = self.collection.query(
  301. query_embeddings=[query_embeddings],
  302. n_results=self.top_n,
  303. )
  304. ids = results["ids"][0]
  305. metadatas = results["metadatas"][0]
  306. documents = results["documents"][0]
  307. return [
  308. Document(
  309. metadata=metadatas[idx],
  310. page_content=documents[idx],
  311. )
  312. for idx in range(len(ids))
  313. ]
  314. import operator
  315. from typing import Optional, Sequence
  316. from langchain_core.documents import BaseDocumentCompressor, Document
  317. from langchain_core.callbacks import Callbacks
  318. from langchain_core.pydantic_v1 import Extra
  319. from sentence_transformers import util
  320. class RerankCompressor(BaseDocumentCompressor):
  321. embeddings_function: Any
  322. reranking_function: Any
  323. r_score: float
  324. top_n: int
  325. class Config:
  326. extra = Extra.forbid
  327. arbitrary_types_allowed = True
  328. def compress_documents(
  329. self,
  330. documents: Sequence[Document],
  331. query: str,
  332. callbacks: Optional[Callbacks] = None,
  333. ) -> Sequence[Document]:
  334. if self.reranking_function:
  335. scores = self.reranking_function.predict(
  336. [(query, doc.page_content) for doc in documents]
  337. )
  338. else:
  339. query_embedding = self.embeddings_function(query)
  340. document_embedding = self.embeddings_function(
  341. [doc.page_content for doc in documents]
  342. )
  343. scores = util.cos_sim(query_embedding, document_embedding)[0]
  344. docs_with_scores = list(zip(documents, scores.tolist()))
  345. if self.r_score:
  346. docs_with_scores = [
  347. (d, s) for d, s in docs_with_scores if s >= self.r_score
  348. ]
  349. result = sorted(docs_with_scores, key=operator.itemgetter(1), reverse=True)
  350. final_results = []
  351. for doc, doc_score in result[: self.top_n]:
  352. metadata = doc.metadata
  353. metadata["score"] = doc_score
  354. doc = Document(
  355. page_content=doc.page_content,
  356. metadata=metadata,
  357. )
  358. final_results.append(doc)
  359. return final_results