12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697 |
- import re
- from typing import List
- from config import CHROMA_CLIENT
- def query_doc(collection_name: str, query: str, k: int, embedding_function):
- try:
- # if you use docker use the model from the environment variable
- collection = CHROMA_CLIENT.get_collection(
- name=collection_name,
- embedding_function=embedding_function,
- )
- result = collection.query(
- query_texts=[query],
- n_results=k,
- )
- return result
- except Exception as e:
- raise e
- def merge_and_sort_query_results(query_results, k):
- # Initialize lists to store combined data
- combined_ids = []
- combined_distances = []
- combined_metadatas = []
- combined_documents = []
- # Combine data from each dictionary
- for data in query_results:
- combined_ids.extend(data["ids"][0])
- combined_distances.extend(data["distances"][0])
- combined_metadatas.extend(data["metadatas"][0])
- combined_documents.extend(data["documents"][0])
- # Create a list of tuples (distance, id, metadata, document)
- combined = list(
- zip(combined_distances, combined_ids, combined_metadatas, combined_documents)
- )
- # Sort the list based on distances
- combined.sort(key=lambda x: x[0])
- # Unzip the sorted list
- sorted_distances, sorted_ids, sorted_metadatas, sorted_documents = zip(*combined)
- # Slicing the lists to include only k elements
- sorted_distances = list(sorted_distances)[:k]
- sorted_ids = list(sorted_ids)[:k]
- sorted_metadatas = list(sorted_metadatas)[:k]
- sorted_documents = list(sorted_documents)[:k]
- # Create the output dictionary
- merged_query_results = {
- "ids": [sorted_ids],
- "distances": [sorted_distances],
- "metadatas": [sorted_metadatas],
- "documents": [sorted_documents],
- "embeddings": None,
- "uris": None,
- "data": None,
- }
- return merged_query_results
- def query_collection(
- collection_names: List[str], query: str, k: int, embedding_function
- ):
- results = []
- for collection_name in collection_names:
- try:
- # if you use docker use the model from the environment variable
- collection = CHROMA_CLIENT.get_collection(
- name=collection_name,
- embedding_function=embedding_function,
- )
- result = collection.query(
- query_texts=[query],
- n_results=k,
- )
- results.append(result)
- except:
- pass
- return merge_and_sort_query_results(results, k)
- def rag_template(template: str, context: str, query: str):
- template = re.sub(r"\[context\]", context, template)
- template = re.sub(r"\[query\]", query, template)
- return template
|