comfyui.py 6.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257
  1. import asyncio
  2. import websocket # NOTE: websocket-client (https://github.com/websocket-client/websocket-client)
  3. import json
  4. import urllib.request
  5. import urllib.parse
  6. import random
  7. import logging
  8. from config import SRC_LOG_LEVELS
  9. log = logging.getLogger(__name__)
  10. log.setLevel(SRC_LOG_LEVELS["COMFYUI"])
  11. from pydantic import BaseModel
  12. from typing import Optional
  13. COMFYUI_DEFAULT_WORKFLOW = """
  14. {
  15. "3": {
  16. "inputs": {
  17. "seed": 0,
  18. "steps": 20,
  19. "cfg": 8,
  20. "sampler_name": "euler",
  21. "scheduler": "normal",
  22. "denoise": 1,
  23. "model": [
  24. "4",
  25. 0
  26. ],
  27. "positive": [
  28. "6",
  29. 0
  30. ],
  31. "negative": [
  32. "7",
  33. 0
  34. ],
  35. "latent_image": [
  36. "5",
  37. 0
  38. ]
  39. },
  40. "class_type": "KSampler",
  41. "_meta": {
  42. "title": "KSampler"
  43. }
  44. },
  45. "4": {
  46. "inputs": {
  47. "ckpt_name": "model.safetensors"
  48. },
  49. "class_type": "CheckpointLoaderSimple",
  50. "_meta": {
  51. "title": "Load Checkpoint"
  52. }
  53. },
  54. "5": {
  55. "inputs": {
  56. "width": 512,
  57. "height": 512,
  58. "batch_size": 1
  59. },
  60. "class_type": "EmptyLatentImage",
  61. "_meta": {
  62. "title": "Empty Latent Image"
  63. }
  64. },
  65. "6": {
  66. "inputs": {
  67. "text": "Prompt",
  68. "clip": [
  69. "4",
  70. 1
  71. ]
  72. },
  73. "class_type": "CLIPTextEncode",
  74. "_meta": {
  75. "title": "CLIP Text Encode (Prompt)"
  76. }
  77. },
  78. "7": {
  79. "inputs": {
  80. "text": "",
  81. "clip": [
  82. "4",
  83. 1
  84. ]
  85. },
  86. "class_type": "CLIPTextEncode",
  87. "_meta": {
  88. "title": "CLIP Text Encode (Prompt)"
  89. }
  90. },
  91. "8": {
  92. "inputs": {
  93. "samples": [
  94. "3",
  95. 0
  96. ],
  97. "vae": [
  98. "4",
  99. 2
  100. ]
  101. },
  102. "class_type": "VAEDecode",
  103. "_meta": {
  104. "title": "VAE Decode"
  105. }
  106. },
  107. "9": {
  108. "inputs": {
  109. "filename_prefix": "ComfyUI",
  110. "images": [
  111. "8",
  112. 0
  113. ]
  114. },
  115. "class_type": "SaveImage",
  116. "_meta": {
  117. "title": "Save Image"
  118. }
  119. }
  120. }
  121. """
  122. def queue_prompt(prompt, client_id, base_url):
  123. log.info("queue_prompt")
  124. p = {"prompt": prompt, "client_id": client_id}
  125. data = json.dumps(p).encode("utf-8")
  126. req = urllib.request.Request(f"{base_url}/prompt", data=data)
  127. return json.loads(urllib.request.urlopen(req).read())
  128. def get_image(filename, subfolder, folder_type, base_url):
  129. log.info("get_image")
  130. data = {"filename": filename, "subfolder": subfolder, "type": folder_type}
  131. url_values = urllib.parse.urlencode(data)
  132. with urllib.request.urlopen(f"{base_url}/view?{url_values}") as response:
  133. return response.read()
  134. def get_image_url(filename, subfolder, folder_type, base_url):
  135. log.info("get_image")
  136. data = {"filename": filename, "subfolder": subfolder, "type": folder_type}
  137. url_values = urllib.parse.urlencode(data)
  138. return f"{base_url}/view?{url_values}"
  139. def get_history(prompt_id, base_url):
  140. log.info("get_history")
  141. with urllib.request.urlopen(f"{base_url}/history/{prompt_id}") as response:
  142. return json.loads(response.read())
  143. def get_images(ws, prompt, client_id, base_url):
  144. prompt_id = queue_prompt(prompt, client_id, base_url)["prompt_id"]
  145. output_images = []
  146. while True:
  147. out = ws.recv()
  148. if isinstance(out, str):
  149. message = json.loads(out)
  150. if message["type"] == "executing":
  151. data = message["data"]
  152. if data["node"] is None and data["prompt_id"] == prompt_id:
  153. break # Execution is done
  154. else:
  155. continue # previews are binary data
  156. history = get_history(prompt_id, base_url)[prompt_id]
  157. for o in history["outputs"]:
  158. for node_id in history["outputs"]:
  159. node_output = history["outputs"][node_id]
  160. if "images" in node_output:
  161. for image in node_output["images"]:
  162. url = get_image_url(
  163. image["filename"], image["subfolder"], image["type"], base_url
  164. )
  165. output_images.append({"url": url})
  166. return {"data": output_images}
  167. class ComfyUINodeInput(BaseModel):
  168. field: Optional[str] = None
  169. node_id: str
  170. key: Optional[str] = "text"
  171. value: Optional[str] = None
  172. class ComfyUIWorkflow(BaseModel):
  173. workflow: str
  174. nodes: list[ComfyUINodeInput]
  175. class ComfyUIGenerateImageForm(BaseModel):
  176. workflow: ComfyUIWorkflow
  177. prompt: str
  178. negative_prompt: Optional[str] = None
  179. width: int
  180. height: int
  181. n: int = 1
  182. steps: Optional[int] = None
  183. seed: Optional[int] = None
  184. async def comfyui_generate_image(
  185. model: str, payload: ComfyUIGenerateImageForm, client_id, base_url
  186. ):
  187. ws_url = base_url.replace("http://", "ws://").replace("https://", "wss://")
  188. workflow = json.loads(payload.workflow.workflow)
  189. for node in payload.workflow.nodes:
  190. if node.field:
  191. if node.field == "model":
  192. workflow[node.node_id]["inputs"][node.key] = model
  193. elif node.field == "prompt":
  194. workflow[node.node_id]["inputs"]["text"] = payload.prompt
  195. elif node.field == "negative_prompt":
  196. workflow[node.node_id]["inputs"]["text"] = payload.negative_prompt
  197. elif node.field == "width":
  198. workflow[node.node_id]["inputs"]["width"] = payload.width
  199. elif node.field == "height":
  200. workflow[node.node_id]["inputs"]["height"] = payload.height
  201. elif node.field == "n":
  202. workflow[node.node_id]["inputs"]["batch_size"] = payload.n
  203. elif node.field == "steps":
  204. workflow[node.node_id]["inputs"]["steps"] = payload.steps
  205. elif node.field == "seed":
  206. workflow[node.node_id]["inputs"]["seed"] = (
  207. payload.seed
  208. if payload.seed
  209. else random.randint(0, 18446744073709551614)
  210. )
  211. else:
  212. workflow[node.node_id]["inputs"][node.key] = node.value
  213. try:
  214. ws = websocket.WebSocket()
  215. ws.connect(f"{ws_url}/ws?clientId={client_id}")
  216. log.info("WebSocket connection established.")
  217. except Exception as e:
  218. log.exception(f"Failed to connect to WebSocket server: {e}")
  219. return None
  220. try:
  221. images = await asyncio.to_thread(get_images, ws, workflow, client_id, base_url)
  222. except Exception as e:
  223. log.exception(f"Error while receiving images: {e}")
  224. images = None
  225. ws.close()
  226. return images