utils.py 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475
  1. import os
  2. import logging
  3. import requests
  4. from typing import List
  5. from apps.ollama.main import (
  6. generate_ollama_embeddings,
  7. GenerateEmbeddingsForm,
  8. )
  9. from huggingface_hub import snapshot_download
  10. from langchain_core.documents import Document
  11. from langchain_community.retrievers import BM25Retriever
  12. from langchain.retrievers import (
  13. ContextualCompressionRetriever,
  14. EnsembleRetriever,
  15. )
  16. from config import SRC_LOG_LEVELS, CHROMA_CLIENT
  17. log = logging.getLogger(__name__)
  18. log.setLevel(SRC_LOG_LEVELS["RAG"])
  19. def query_embeddings_doc(
  20. collection_name: str,
  21. query: str,
  22. k: int,
  23. r: float,
  24. embeddings_function,
  25. reranking_function,
  26. ):
  27. try:
  28. # if you use docker use the model from the environment variable
  29. collection = CHROMA_CLIENT.get_collection(name=collection_name)
  30. documents = collection.get() # get all documents
  31. bm25_retriever = BM25Retriever.from_texts(
  32. texts=documents.get("documents"),
  33. metadatas=documents.get("metadatas"),
  34. )
  35. bm25_retriever.k = k
  36. chroma_retriever = ChromaRetriever(
  37. collection=collection,
  38. embeddings_function=embeddings_function,
  39. top_n=k,
  40. )
  41. ensemble_retriever = EnsembleRetriever(
  42. retrievers=[bm25_retriever, chroma_retriever], weights=[0.5, 0.5]
  43. )
  44. compressor = RerankCompressor(
  45. embeddings_function=embeddings_function,
  46. reranking_function=reranking_function,
  47. r_score=r,
  48. top_n=k,
  49. )
  50. compression_retriever = ContextualCompressionRetriever(
  51. base_compressor=compressor, base_retriever=ensemble_retriever
  52. )
  53. result = compression_retriever.invoke(query)
  54. result = {
  55. "distances": [[d.metadata.get("score") for d in result]],
  56. "documents": [[d.page_content for d in result]],
  57. "metadatas": [[d.metadata for d in result]],
  58. }
  59. return result
  60. except Exception as e:
  61. raise e
  62. def merge_and_sort_query_results(query_results, k):
  63. # Initialize lists to store combined data
  64. combined_distances = []
  65. combined_documents = []
  66. combined_metadatas = []
  67. for data in query_results:
  68. combined_distances.extend(data["distances"][0])
  69. combined_documents.extend(data["documents"][0])
  70. combined_metadatas.extend(data["metadatas"][0])
  71. # Create a list of tuples (distance, document, metadata)
  72. combined = list(zip(combined_distances, combined_documents, combined_metadatas))
  73. # Sort the list based on distances
  74. combined.sort(key=lambda x: x[0])
  75. # We don't have anything :-(
  76. if not combined:
  77. sorted_distances = []
  78. sorted_documents = []
  79. sorted_metadatas = []
  80. else:
  81. # Unzip the sorted list
  82. sorted_distances, sorted_documents, sorted_metadatas = zip(*combined)
  83. # Slicing the lists to include only k elements
  84. sorted_distances = list(sorted_distances)[:k]
  85. sorted_documents = list(sorted_documents)[:k]
  86. sorted_metadatas = list(sorted_metadatas)[:k]
  87. # Create the output dictionary
  88. result = {
  89. "distances": [sorted_distances],
  90. "documents": [sorted_documents],
  91. "metadatas": [sorted_metadatas],
  92. }
  93. return result
  94. def query_embeddings_collection(
  95. collection_names: List[str],
  96. query: str,
  97. k: int,
  98. r: float,
  99. embeddings_function,
  100. reranking_function,
  101. ):
  102. results = []
  103. for collection_name in collection_names:
  104. try:
  105. result = query_embeddings_doc(
  106. collection_name=collection_name,
  107. query=query,
  108. k=k,
  109. r=r,
  110. embeddings_function=embeddings_function,
  111. reranking_function=reranking_function,
  112. )
  113. results.append(result)
  114. except:
  115. pass
  116. return merge_and_sort_query_results(results, k)
  117. def rag_template(template: str, context: str, query: str):
  118. template = template.replace("[context]", context)
  119. template = template.replace("[query]", query)
  120. return template
  121. def query_embeddings_function(
  122. embedding_engine,
  123. embedding_model,
  124. embedding_function,
  125. openai_key,
  126. openai_url,
  127. ):
  128. if embedding_engine == "":
  129. return lambda query: embedding_function.encode(query).tolist()
  130. elif embedding_engine in ["ollama", "openai"]:
  131. if embedding_engine == "ollama":
  132. func = lambda query: generate_ollama_embeddings(
  133. GenerateEmbeddingsForm(
  134. **{
  135. "model": embedding_model,
  136. "prompt": query,
  137. }
  138. )
  139. )
  140. elif embedding_engine == "openai":
  141. func = lambda query: generate_openai_embeddings(
  142. model=embedding_model,
  143. text=query,
  144. key=openai_key,
  145. url=openai_url,
  146. )
  147. def generate_multiple(query, f):
  148. if isinstance(query, list):
  149. return [f(q) for q in query]
  150. else:
  151. return f(query)
  152. return lambda query: generate_multiple(query, func)
  153. def rag_messages(
  154. docs,
  155. messages,
  156. template,
  157. k,
  158. r,
  159. embedding_engine,
  160. embedding_model,
  161. embedding_function,
  162. reranking_function,
  163. openai_key,
  164. openai_url,
  165. ):
  166. log.debug(
  167. f"docs: {docs} {messages} {embedding_engine} {embedding_model} {embedding_function} {reranking_function} {openai_key} {openai_url}"
  168. )
  169. last_user_message_idx = None
  170. for i in range(len(messages) - 1, -1, -1):
  171. if messages[i]["role"] == "user":
  172. last_user_message_idx = i
  173. break
  174. user_message = messages[last_user_message_idx]
  175. if isinstance(user_message["content"], list):
  176. # Handle list content input
  177. content_type = "list"
  178. query = ""
  179. for content_item in user_message["content"]:
  180. if content_item["type"] == "text":
  181. query = content_item["text"]
  182. break
  183. elif isinstance(user_message["content"], str):
  184. # Handle text content input
  185. content_type = "text"
  186. query = user_message["content"]
  187. else:
  188. # Fallback in case the input does not match expected types
  189. content_type = None
  190. query = ""
  191. embeddings_function = query_embeddings_function(
  192. embedding_engine,
  193. embedding_model,
  194. embedding_function,
  195. openai_key,
  196. openai_url,
  197. )
  198. extracted_collections = []
  199. relevant_contexts = []
  200. for doc in docs:
  201. context = None
  202. collection = doc.get("collection_name")
  203. if collection:
  204. collection = [collection]
  205. else:
  206. collection = doc.get("collection_names", [])
  207. collection = set(collection).difference(extracted_collections)
  208. if not collection:
  209. log.debug(f"skipping {doc} as it has already been extracted")
  210. continue
  211. try:
  212. if doc["type"] == "text":
  213. context = doc["content"]
  214. elif doc["type"] == "collection":
  215. context = query_embeddings_collection(
  216. collection_names=doc["collection_names"],
  217. query=query,
  218. k=k,
  219. r=r,
  220. embeddings_function=embeddings_function,
  221. reranking_function=reranking_function,
  222. )
  223. else:
  224. context = query_embeddings_doc(
  225. collection_name=doc["collection_name"],
  226. query=query,
  227. k=k,
  228. r=r,
  229. embeddings_function=embeddings_function,
  230. reranking_function=reranking_function,
  231. )
  232. except Exception as e:
  233. log.exception(e)
  234. context = None
  235. if context:
  236. relevant_contexts.append(context)
  237. extracted_collections.extend(collection)
  238. context_string = ""
  239. for context in relevant_contexts:
  240. items = context["documents"][0]
  241. context_string += "\n\n".join(items)
  242. context_string = context_string.strip()
  243. ra_content = rag_template(
  244. template=template,
  245. context=context_string,
  246. query=query,
  247. )
  248. log.debug(f"ra_content: {ra_content}")
  249. if content_type == "list":
  250. new_content = []
  251. for content_item in user_message["content"]:
  252. if content_item["type"] == "text":
  253. # Update the text item's content with ra_content
  254. new_content.append({"type": "text", "text": ra_content})
  255. else:
  256. # Keep other types of content as they are
  257. new_content.append(content_item)
  258. new_user_message = {**user_message, "content": new_content}
  259. else:
  260. new_user_message = {
  261. **user_message,
  262. "content": ra_content,
  263. }
  264. messages[last_user_message_idx] = new_user_message
  265. return messages
  266. def get_model_path(model: str, update_model: bool = False):
  267. # Construct huggingface_hub kwargs with local_files_only to return the snapshot path
  268. cache_dir = os.getenv("SENTENCE_TRANSFORMERS_HOME")
  269. local_files_only = not update_model
  270. snapshot_kwargs = {
  271. "cache_dir": cache_dir,
  272. "local_files_only": local_files_only,
  273. }
  274. log.debug(f"embedding_model: {model}")
  275. log.debug(f"snapshot_kwargs: {snapshot_kwargs}")
  276. # Inspiration from upstream sentence_transformers
  277. if (
  278. os.path.exists(model)
  279. or ("\\" in model or model.count("/") > 1)
  280. and local_files_only
  281. ):
  282. # If fully qualified path exists, return input, else set repo_id
  283. return model
  284. elif "/" not in model:
  285. # Set valid repo_id for model short-name
  286. model = "sentence-transformers" + "/" + model
  287. snapshot_kwargs["repo_id"] = model
  288. # Attempt to query the huggingface_hub library to determine the local path and/or to update
  289. try:
  290. model_repo_path = snapshot_download(**snapshot_kwargs)
  291. log.debug(f"model_repo_path: {model_repo_path}")
  292. return model_repo_path
  293. except Exception as e:
  294. log.exception(f"Cannot determine model snapshot path: {e}")
  295. return model
  296. def generate_openai_embeddings(
  297. model: str, text: str, key: str, url: str = "https://api.openai.com/v1"
  298. ):
  299. try:
  300. r = requests.post(
  301. f"{url}/embeddings",
  302. headers={
  303. "Content-Type": "application/json",
  304. "Authorization": f"Bearer {key}",
  305. },
  306. json={"input": text, "model": model},
  307. )
  308. r.raise_for_status()
  309. data = r.json()
  310. if "data" in data:
  311. return data["data"][0]["embedding"]
  312. else:
  313. raise "Something went wrong :/"
  314. except Exception as e:
  315. print(e)
  316. return None
  317. from typing import Any
  318. from langchain_core.retrievers import BaseRetriever
  319. from langchain_core.callbacks import CallbackManagerForRetrieverRun
  320. class ChromaRetriever(BaseRetriever):
  321. collection: Any
  322. embeddings_function: Any
  323. top_n: int
  324. def _get_relevant_documents(
  325. self,
  326. query: str,
  327. *,
  328. run_manager: CallbackManagerForRetrieverRun,
  329. ) -> List[Document]:
  330. query_embeddings = self.embeddings_function(query)
  331. results = self.collection.query(
  332. query_embeddings=[query_embeddings],
  333. n_results=self.top_n,
  334. )
  335. ids = results["ids"][0]
  336. metadatas = results["metadatas"][0]
  337. documents = results["documents"][0]
  338. return [
  339. Document(
  340. metadata=metadatas[idx],
  341. page_content=documents[idx],
  342. )
  343. for idx in range(len(ids))
  344. ]
  345. import operator
  346. from typing import Optional, Sequence
  347. from langchain_core.documents import BaseDocumentCompressor, Document
  348. from langchain_core.callbacks import Callbacks
  349. from langchain_core.pydantic_v1 import Extra
  350. from sentence_transformers import util
  351. class RerankCompressor(BaseDocumentCompressor):
  352. embeddings_function: Any
  353. reranking_function: Any
  354. r_score: float
  355. top_n: int
  356. class Config:
  357. extra = Extra.forbid
  358. arbitrary_types_allowed = True
  359. def compress_documents(
  360. self,
  361. documents: Sequence[Document],
  362. query: str,
  363. callbacks: Optional[Callbacks] = None,
  364. ) -> Sequence[Document]:
  365. if self.reranking_function:
  366. scores = self.reranking_function.predict(
  367. [(query, doc.page_content) for doc in documents]
  368. )
  369. else:
  370. query_embedding = self.embeddings_function(query)
  371. document_embedding = self.embeddings_function(
  372. [doc.page_content for doc in documents]
  373. )
  374. scores = util.cos_sim(query_embedding, document_embedding)[0]
  375. docs_with_scores = list(zip(documents, scores.tolist()))
  376. if self.r_score:
  377. docs_with_scores = [
  378. (d, s) for d, s in docs_with_scores if s >= self.r_score
  379. ]
  380. result = sorted(docs_with_scores, key=operator.itemgetter(1), reverse=True)
  381. final_results = []
  382. for doc, doc_score in result[: self.top_n]:
  383. metadata = doc.metadata
  384. metadata["score"] = doc_score
  385. doc = Document(
  386. page_content=doc.page_content,
  387. metadata=metadata,
  388. )
  389. final_results.append(doc)
  390. return final_results