123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176 |
- from typing import Optional
- from qdrant_client import QdrantClient as Qclient
- from qdrant_client.http.models import PointStruct
- from qdrant_client.models import models
- from open_webui.apps.retrieval.vector.main import VectorItem, SearchResult, GetResult
- from open_webui.config import QDRANT_URI
- NO_LIMIT = 999999999
- class QdrantClient:
- def __init__(self):
- self.collection_prefix = "open-webui"
- self.QDRANT_URI = QDRANT_URI
- self.client = Qclient(url=self.QDRANT_URI) if self.QDRANT_URI else None
- def _result_to_get_result(self, points) -> GetResult:
- ids = []
- documents = []
- metadatas = []
- for point in points:
- payload = point.payload
- ids.append(point.id)
- documents.append(payload["text"])
- metadatas.append(payload["metadata"])
- return GetResult(
- **{
- "ids": [ids],
- "documents": [documents],
- "metadatas": [metadatas],
- }
- )
- def _create_collection(self, collection_name: str, dimension: int):
- collection_name_with_prefix = f"{self.collection_prefix}_{collection_name}"
- self.client.create_collection(
- collection_name=collection_name_with_prefix,
- vectors_config=models.VectorParams(size=dimension, distance=models.Distance.COSINE),
- )
- print(f"collection {collection_name_with_prefix} successfully created!")
- def _create_collection_if_not_exists(self, collection_name, dimension):
- if not self.has_collection(
- collection_name=collection_name
- ):
- self._create_collection(
- collection_name=collection_name, dimension=dimension
- )
- def _create_points(self, items: list[VectorItem]):
- return [
- PointStruct(
- id=item["id"],
- vector=item["vector"],
- payload={
- "text": item["text"],
- "metadata": item["metadata"]
- },
- )
- for item in items
- ]
- def has_collection(self, collection_name: str) -> bool:
- return self.client.collection_exists(f"{self.collection_prefix}_{collection_name}")
- def delete_collection(self, collection_name: str):
- return self.client.delete_collection(collection_name=f"{self.collection_prefix}_{collection_name}")
- def search(
- self, collection_name: str, vectors: list[list[float | int]], limit: int
- ) -> Optional[SearchResult]:
- # Search for the nearest neighbor items based on the vectors and return 'limit' number of results.
- if limit is None:
- limit = NO_LIMIT # otherwise qdrant would set limit to 10!
- query_response = self.client.query_points(
- collection_name=f"{self.collection_prefix}_{collection_name}",
- query=vectors[0],
- limit=limit,
- )
- get_result = self._result_to_get_result(query_response.points)
- return SearchResult(
- ids=get_result.ids,
- documents=get_result.documents,
- metadatas=get_result.metadatas,
- distances=[[point.score for point in query_response.points]]
- )
- def query(self, collection_name: str, filter: dict, limit: Optional[int] = None):
- # Construct the filter string for querying
- if not self.has_collection(collection_name):
- return None
- try:
- if limit is None:
- limit = NO_LIMIT # otherwise qdrant would set limit to 10!
- field_conditions = []
- for key, value in filter.items():
- field_conditions.append(
- models.FieldCondition(key=f"metadata.{key}", match=models.MatchValue(value=value)))
- points = self.client.query_points(
- collection_name=f"{self.collection_prefix}_{collection_name}",
- query_filter=models.Filter(should=field_conditions),
- limit=limit,
- )
- return self._result_to_get_result(points.points)
- except Exception as e:
- print(e)
- return None
- def get(self, collection_name: str) -> Optional[GetResult]:
- # Get all the items in the collection.
- points = self.client.query_points(
- collection_name=f"{self.collection_prefix}_{collection_name}",
- limit=NO_LIMIT # otherwise qdrant would set limit to 10!
- )
- return self._result_to_get_result(points.points)
- def insert(self, collection_name: str, items: list[VectorItem]):
- # Insert the items into the collection, if the collection does not exist, it will be created.
- self._create_collection_if_not_exists(collection_name, len(items[0]["vector"]))
- points = self._create_points(items)
- self.client.upload_points(f"{self.collection_prefix}_{collection_name}", points)
- def upsert(self, collection_name: str, items: list[VectorItem]):
- # Update the items in the collection, if the items are not present, insert them. If the collection does not exist, it will be created.
- self._create_collection_if_not_exists(collection_name, len(items[0]["vector"]))
- points = self._create_points(items)
- return self.client.upsert(f"{self.collection_prefix}_{collection_name}", points)
- def delete(
- self,
- collection_name: str,
- ids: Optional[list[str]] = None,
- filter: Optional[dict] = None,
- ):
- # Delete the items from the collection based on the ids.
- field_conditions = []
- if ids:
- for id_value in ids:
- field_conditions.append(
- models.FieldCondition(
- key="metadata.id",
- match=models.MatchValue(value=id_value),
- ),
- ),
- elif filter:
- for key, value in filter.items():
- field_conditions.append(
- models.FieldCondition(
- key=f"metadata.{key}",
- match=models.MatchValue(value=value),
- ),
- ),
- return self.client.delete(
- collection_name=f"{self.collection_prefix}_{collection_name}",
- points_selector=models.FilterSelector(
- filter=models.Filter(
- must=field_conditions
- )
- ),
- )
- def reset(self):
- # Resets the database. This will delete all collections and item entries.
- collection_names = self.client.get_collections().collections
- for collection_name in collection_names:
- if collection_name.name.startswith(self.collection_prefix):
- self.client.delete_collection(collection_name=collection_name.name)
|