qdrant.py 6.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176
  1. from typing import Optional
  2. from qdrant_client import QdrantClient as Qclient
  3. from qdrant_client.http.models import PointStruct
  4. from qdrant_client.models import models
  5. from open_webui.apps.retrieval.vector.main import VectorItem, SearchResult, GetResult
  6. from open_webui.config import QDRANT_URI
  7. NO_LIMIT = 999999999
  8. class QdrantClient:
  9. def __init__(self):
  10. self.collection_prefix = "open-webui"
  11. self.QDRANT_URI = QDRANT_URI
  12. self.client = Qclient(url=self.QDRANT_URI) if self.QDRANT_URI else None
  13. def _result_to_get_result(self, points) -> GetResult:
  14. ids = []
  15. documents = []
  16. metadatas = []
  17. for point in points:
  18. payload = point.payload
  19. ids.append(point.id)
  20. documents.append(payload["text"])
  21. metadatas.append(payload["metadata"])
  22. return GetResult(
  23. **{
  24. "ids": [ids],
  25. "documents": [documents],
  26. "metadatas": [metadatas],
  27. }
  28. )
  29. def _create_collection(self, collection_name: str, dimension: int):
  30. collection_name_with_prefix = f"{self.collection_prefix}_{collection_name}"
  31. self.client.create_collection(
  32. collection_name=collection_name_with_prefix,
  33. vectors_config=models.VectorParams(size=dimension, distance=models.Distance.COSINE),
  34. )
  35. print(f"collection {collection_name_with_prefix} successfully created!")
  36. def _create_collection_if_not_exists(self, collection_name, dimension):
  37. if not self.has_collection(
  38. collection_name=collection_name
  39. ):
  40. self._create_collection(
  41. collection_name=collection_name, dimension=dimension
  42. )
  43. def _create_points(self, items: list[VectorItem]):
  44. return [
  45. PointStruct(
  46. id=item["id"],
  47. vector=item["vector"],
  48. payload={
  49. "text": item["text"],
  50. "metadata": item["metadata"]
  51. },
  52. )
  53. for item in items
  54. ]
  55. def has_collection(self, collection_name: str) -> bool:
  56. return self.client.collection_exists(f"{self.collection_prefix}_{collection_name}")
  57. def delete_collection(self, collection_name: str):
  58. return self.client.delete_collection(collection_name=f"{self.collection_prefix}_{collection_name}")
  59. def search(
  60. self, collection_name: str, vectors: list[list[float | int]], limit: int
  61. ) -> Optional[SearchResult]:
  62. # Search for the nearest neighbor items based on the vectors and return 'limit' number of results.
  63. if limit is None:
  64. limit = NO_LIMIT # otherwise qdrant would set limit to 10!
  65. query_response = self.client.query_points(
  66. collection_name=f"{self.collection_prefix}_{collection_name}",
  67. query=vectors[0],
  68. limit=limit,
  69. )
  70. get_result = self._result_to_get_result(query_response.points)
  71. return SearchResult(
  72. ids=get_result.ids,
  73. documents=get_result.documents,
  74. metadatas=get_result.metadatas,
  75. distances=[[point.score for point in query_response.points]]
  76. )
  77. def query(self, collection_name: str, filter: dict, limit: Optional[int] = None):
  78. # Construct the filter string for querying
  79. if not self.has_collection(collection_name):
  80. return None
  81. try:
  82. if limit is None:
  83. limit = NO_LIMIT # otherwise qdrant would set limit to 10!
  84. field_conditions = []
  85. for key, value in filter.items():
  86. field_conditions.append(
  87. models.FieldCondition(key=f"metadata.{key}", match=models.MatchValue(value=value)))
  88. points = self.client.query_points(
  89. collection_name=f"{self.collection_prefix}_{collection_name}",
  90. query_filter=models.Filter(should=field_conditions),
  91. limit=limit,
  92. )
  93. return self._result_to_get_result(points.points)
  94. except Exception as e:
  95. print(e)
  96. return None
  97. def get(self, collection_name: str) -> Optional[GetResult]:
  98. # Get all the items in the collection.
  99. points = self.client.query_points(
  100. collection_name=f"{self.collection_prefix}_{collection_name}",
  101. limit=NO_LIMIT # otherwise qdrant would set limit to 10!
  102. )
  103. return self._result_to_get_result(points.points)
  104. def insert(self, collection_name: str, items: list[VectorItem]):
  105. # Insert the items into the collection, if the collection does not exist, it will be created.
  106. self._create_collection_if_not_exists(collection_name, len(items[0]["vector"]))
  107. points = self._create_points(items)
  108. self.client.upload_points(f"{self.collection_prefix}_{collection_name}", points)
  109. def upsert(self, collection_name: str, items: list[VectorItem]):
  110. # Update the items in the collection, if the items are not present, insert them. If the collection does not exist, it will be created.
  111. self._create_collection_if_not_exists(collection_name, len(items[0]["vector"]))
  112. points = self._create_points(items)
  113. return self.client.upsert(f"{self.collection_prefix}_{collection_name}", points)
  114. def delete(
  115. self,
  116. collection_name: str,
  117. ids: Optional[list[str]] = None,
  118. filter: Optional[dict] = None,
  119. ):
  120. # Delete the items from the collection based on the ids.
  121. field_conditions = []
  122. if ids:
  123. for id_value in ids:
  124. field_conditions.append(
  125. models.FieldCondition(
  126. key="metadata.id",
  127. match=models.MatchValue(value=id_value),
  128. ),
  129. ),
  130. elif filter:
  131. for key, value in filter.items():
  132. field_conditions.append(
  133. models.FieldCondition(
  134. key=f"metadata.{key}",
  135. match=models.MatchValue(value=value),
  136. ),
  137. ),
  138. return self.client.delete(
  139. collection_name=f"{self.collection_prefix}_{collection_name}",
  140. points_selector=models.FilterSelector(
  141. filter=models.Filter(
  142. must=field_conditions
  143. )
  144. ),
  145. )
  146. def reset(self):
  147. # Resets the database. This will delete all collections and item entries.
  148. collection_names = self.client.get_collections().collections
  149. for collection_name in collection_names:
  150. if collection_name.name.startswith(self.collection_prefix):
  151. self.client.delete_collection(collection_name=collection_name.name)