utils.py 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593
  1. import logging
  2. import os
  3. import uuid
  4. from typing import Optional, Union
  5. import asyncio
  6. import requests
  7. from huggingface_hub import snapshot_download
  8. from langchain.retrievers import ContextualCompressionRetriever, EnsembleRetriever
  9. from langchain_community.retrievers import BM25Retriever
  10. from langchain_core.documents import Document
  11. from open_webui.config import VECTOR_DB
  12. from open_webui.retrieval.vector.connector import VECTOR_DB_CLIENT
  13. from open_webui.utils.misc import get_last_user_message
  14. from open_webui.models.users import UserModel
  15. from open_webui.env import (
  16. SRC_LOG_LEVELS,
  17. OFFLINE_MODE,
  18. ENABLE_FORWARD_USER_INFO_HEADERS,
  19. )
  20. log = logging.getLogger(__name__)
  21. log.setLevel(SRC_LOG_LEVELS["RAG"])
  22. from typing import Any
  23. from langchain_core.callbacks import CallbackManagerForRetrieverRun
  24. from langchain_core.retrievers import BaseRetriever
  25. class VectorSearchRetriever(BaseRetriever):
  26. collection_name: Any
  27. embedding_function: Any
  28. top_k: int
  29. def _get_relevant_documents(
  30. self,
  31. query: str,
  32. *,
  33. run_manager: CallbackManagerForRetrieverRun,
  34. ) -> list[Document]:
  35. result = VECTOR_DB_CLIENT.search(
  36. collection_name=self.collection_name,
  37. vectors=[self.embedding_function(query)],
  38. limit=self.top_k,
  39. )
  40. ids = result.ids[0]
  41. metadatas = result.metadatas[0]
  42. documents = result.documents[0]
  43. results = []
  44. for idx in range(len(ids)):
  45. results.append(
  46. Document(
  47. metadata=metadatas[idx],
  48. page_content=documents[idx],
  49. )
  50. )
  51. return results
  52. def query_doc(
  53. collection_name: str, query_embedding: list[float], k: int, user: UserModel = None
  54. ):
  55. try:
  56. result = VECTOR_DB_CLIENT.search(
  57. collection_name=collection_name,
  58. vectors=[query_embedding],
  59. limit=k,
  60. )
  61. if result:
  62. log.info(f"query_doc:result {result.ids} {result.metadatas}")
  63. return result
  64. except Exception as e:
  65. print(e)
  66. raise e
  67. def query_doc_with_hybrid_search(
  68. collection_name: str,
  69. query: str,
  70. embedding_function,
  71. k: int,
  72. reranking_function,
  73. r: float,
  74. ) -> dict:
  75. try:
  76. result = VECTOR_DB_CLIENT.get(collection_name=collection_name)
  77. bm25_retriever = BM25Retriever.from_texts(
  78. texts=result.documents[0],
  79. metadatas=result.metadatas[0],
  80. )
  81. bm25_retriever.k = k
  82. vector_search_retriever = VectorSearchRetriever(
  83. collection_name=collection_name,
  84. embedding_function=embedding_function,
  85. top_k=k,
  86. )
  87. ensemble_retriever = EnsembleRetriever(
  88. retrievers=[bm25_retriever, vector_search_retriever], weights=[0.5, 0.5]
  89. )
  90. compressor = RerankCompressor(
  91. embedding_function=embedding_function,
  92. top_n=k,
  93. reranking_function=reranking_function,
  94. r_score=r,
  95. )
  96. compression_retriever = ContextualCompressionRetriever(
  97. base_compressor=compressor, base_retriever=ensemble_retriever
  98. )
  99. result = compression_retriever.invoke(query)
  100. result = {
  101. "distances": [[d.metadata.get("score") for d in result]],
  102. "documents": [[d.page_content for d in result]],
  103. "metadatas": [[d.metadata for d in result]],
  104. }
  105. log.info(
  106. "query_doc_with_hybrid_search:result "
  107. + f'{result["metadatas"]} {result["distances"]}'
  108. )
  109. return result
  110. except Exception as e:
  111. raise e
  112. def merge_and_sort_query_results(
  113. query_results: list[dict], k: int, reverse: bool = False
  114. ) -> list[dict]:
  115. # Initialize lists to store combined data
  116. combined_distances = []
  117. combined_documents = []
  118. combined_metadatas = []
  119. for data in query_results:
  120. combined_distances.extend(data["distances"][0])
  121. combined_documents.extend(data["documents"][0])
  122. combined_metadatas.extend(data["metadatas"][0])
  123. # Create a list of tuples (distance, document, metadata)
  124. combined = list(zip(combined_distances, combined_documents, combined_metadatas))
  125. # Sort the list based on distances
  126. combined.sort(key=lambda x: x[0], reverse=reverse)
  127. # We don't have anything :-(
  128. if not combined:
  129. sorted_distances = []
  130. sorted_documents = []
  131. sorted_metadatas = []
  132. else:
  133. # Unzip the sorted list
  134. sorted_distances, sorted_documents, sorted_metadatas = zip(*combined)
  135. # Slicing the lists to include only k elements
  136. sorted_distances = list(sorted_distances)[:k]
  137. sorted_documents = list(sorted_documents)[:k]
  138. sorted_metadatas = list(sorted_metadatas)[:k]
  139. # Create the output dictionary
  140. result = {
  141. "distances": [sorted_distances],
  142. "documents": [sorted_documents],
  143. "metadatas": [sorted_metadatas],
  144. }
  145. return result
  146. def query_collection(
  147. collection_names: list[str],
  148. queries: list[str],
  149. embedding_function,
  150. k: int,
  151. ) -> dict:
  152. results = []
  153. for query in queries:
  154. query_embedding = embedding_function(query)
  155. for collection_name in collection_names:
  156. if collection_name:
  157. try:
  158. result = query_doc(
  159. collection_name=collection_name,
  160. k=k,
  161. query_embedding=query_embedding,
  162. )
  163. if result is not None:
  164. results.append(result.model_dump())
  165. except Exception as e:
  166. log.exception(f"Error when querying the collection: {e}")
  167. else:
  168. pass
  169. if VECTOR_DB == "chroma":
  170. # Chroma uses unconventional cosine similarity, so we don't need to reverse the results
  171. # https://docs.trychroma.com/docs/collections/configure#configuring-chroma-collections
  172. return merge_and_sort_query_results(results, k=k, reverse=False)
  173. else:
  174. return merge_and_sort_query_results(results, k=k, reverse=True)
  175. def query_collection_with_hybrid_search(
  176. collection_names: list[str],
  177. queries: list[str],
  178. embedding_function,
  179. k: int,
  180. reranking_function,
  181. r: float,
  182. ) -> dict:
  183. results = []
  184. error = False
  185. for collection_name in collection_names:
  186. try:
  187. for query in queries:
  188. result = query_doc_with_hybrid_search(
  189. collection_name=collection_name,
  190. query=query,
  191. embedding_function=embedding_function,
  192. k=k,
  193. reranking_function=reranking_function,
  194. r=r,
  195. )
  196. results.append(result)
  197. except Exception as e:
  198. log.exception(
  199. "Error when querying the collection with " f"hybrid_search: {e}"
  200. )
  201. error = True
  202. if error:
  203. raise Exception(
  204. "Hybrid search failed for all collections. Using Non hybrid search as fallback."
  205. )
  206. if VECTOR_DB == "chroma":
  207. # Chroma uses unconventional cosine similarity, so we don't need to reverse the results
  208. # https://docs.trychroma.com/docs/collections/configure#configuring-chroma-collections
  209. return merge_and_sort_query_results(results, k=k, reverse=False)
  210. else:
  211. return merge_and_sort_query_results(results, k=k, reverse=True)
  212. def get_embedding_function(
  213. embedding_engine,
  214. embedding_model,
  215. embedding_function,
  216. url,
  217. key,
  218. embedding_batch_size,
  219. ):
  220. if embedding_engine == "":
  221. return lambda query, user=None: embedding_function.encode(query).tolist()
  222. elif embedding_engine in ["ollama", "openai"]:
  223. func = lambda query, user=None: generate_embeddings(
  224. engine=embedding_engine,
  225. model=embedding_model,
  226. text=query,
  227. url=url,
  228. key=key,
  229. user=user,
  230. )
  231. def generate_multiple(query, user, func):
  232. if isinstance(query, list):
  233. embeddings = []
  234. for i in range(0, len(query), embedding_batch_size):
  235. embeddings.extend(
  236. func(query[i : i + embedding_batch_size], user=user)
  237. )
  238. return embeddings
  239. else:
  240. return func(query, user)
  241. return lambda query, user=None: generate_multiple(query, user, func)
  242. else:
  243. raise ValueError(f"Unknown embedding engine: {embedding_engine}")
  244. def get_sources_from_files(
  245. files,
  246. queries,
  247. embedding_function,
  248. k,
  249. reranking_function,
  250. r,
  251. hybrid_search,
  252. ):
  253. log.debug(f"files: {files} {queries} {embedding_function} {reranking_function}")
  254. extracted_collections = []
  255. relevant_contexts = []
  256. for file in files:
  257. if file.get("docs"):
  258. context = {
  259. "documents": [[doc.get("content") for doc in file.get("docs")]],
  260. "metadatas": [[doc.get("metadata") for doc in file.get("docs")]],
  261. }
  262. elif file.get("context") == "full":
  263. context = {
  264. "documents": [[file.get("file").get("data", {}).get("content")]],
  265. "metadatas": [[{"file_id": file.get("id"), "name": file.get("name")}]],
  266. }
  267. else:
  268. context = None
  269. collection_names = []
  270. if file.get("type") == "collection":
  271. if file.get("legacy"):
  272. collection_names = file.get("collection_names", [])
  273. else:
  274. collection_names.append(file["id"])
  275. elif file.get("collection_name"):
  276. collection_names.append(file["collection_name"])
  277. elif file.get("id"):
  278. if file.get("legacy"):
  279. collection_names.append(f"{file['id']}")
  280. else:
  281. collection_names.append(f"file-{file['id']}")
  282. collection_names = set(collection_names).difference(extracted_collections)
  283. if not collection_names:
  284. log.debug(f"skipping {file} as it has already been extracted")
  285. continue
  286. try:
  287. context = None
  288. if file.get("type") == "text":
  289. context = file["content"]
  290. else:
  291. if hybrid_search:
  292. try:
  293. context = query_collection_with_hybrid_search(
  294. collection_names=collection_names,
  295. queries=queries,
  296. embedding_function=embedding_function,
  297. k=k,
  298. reranking_function=reranking_function,
  299. r=r,
  300. )
  301. except Exception as e:
  302. log.debug(
  303. "Error when using hybrid search, using"
  304. " non hybrid search as fallback."
  305. )
  306. if (not hybrid_search) or (context is None):
  307. context = query_collection(
  308. collection_names=collection_names,
  309. queries=queries,
  310. embedding_function=embedding_function,
  311. k=k,
  312. )
  313. except Exception as e:
  314. log.exception(e)
  315. extracted_collections.extend(collection_names)
  316. if context:
  317. if "data" in file:
  318. del file["data"]
  319. relevant_contexts.append({**context, "file": file})
  320. sources = []
  321. for context in relevant_contexts:
  322. try:
  323. if "documents" in context:
  324. if "metadatas" in context:
  325. source = {
  326. "source": context["file"],
  327. "document": context["documents"][0],
  328. "metadata": context["metadatas"][0],
  329. }
  330. if "distances" in context and context["distances"]:
  331. source["distances"] = context["distances"][0]
  332. sources.append(source)
  333. except Exception as e:
  334. log.exception(e)
  335. return sources
  336. def get_model_path(model: str, update_model: bool = False):
  337. # Construct huggingface_hub kwargs with local_files_only to return the snapshot path
  338. cache_dir = os.getenv("SENTENCE_TRANSFORMERS_HOME")
  339. local_files_only = not update_model
  340. if OFFLINE_MODE:
  341. local_files_only = True
  342. snapshot_kwargs = {
  343. "cache_dir": cache_dir,
  344. "local_files_only": local_files_only,
  345. }
  346. log.debug(f"model: {model}")
  347. log.debug(f"snapshot_kwargs: {snapshot_kwargs}")
  348. # Inspiration from upstream sentence_transformers
  349. if (
  350. os.path.exists(model)
  351. or ("\\" in model or model.count("/") > 1)
  352. and local_files_only
  353. ):
  354. # If fully qualified path exists, return input, else set repo_id
  355. return model
  356. elif "/" not in model:
  357. # Set valid repo_id for model short-name
  358. model = "sentence-transformers" + "/" + model
  359. snapshot_kwargs["repo_id"] = model
  360. # Attempt to query the huggingface_hub library to determine the local path and/or to update
  361. try:
  362. model_repo_path = snapshot_download(**snapshot_kwargs)
  363. log.debug(f"model_repo_path: {model_repo_path}")
  364. return model_repo_path
  365. except Exception as e:
  366. log.exception(f"Cannot determine model snapshot path: {e}")
  367. return model
  368. def generate_openai_batch_embeddings(
  369. model: str,
  370. texts: list[str],
  371. url: str = "https://api.openai.com/v1",
  372. key: str = "",
  373. user: UserModel = None,
  374. ) -> Optional[list[list[float]]]:
  375. try:
  376. r = requests.post(
  377. f"{url}/embeddings",
  378. headers={
  379. "Content-Type": "application/json",
  380. "Authorization": f"Bearer {key}",
  381. **(
  382. {
  383. "X-OpenWebUI-User-Name": user.name,
  384. "X-OpenWebUI-User-Id": user.id,
  385. "X-OpenWebUI-User-Email": user.email,
  386. "X-OpenWebUI-User-Role": user.role,
  387. }
  388. if ENABLE_FORWARD_USER_INFO_HEADERS and user
  389. else {}
  390. ),
  391. },
  392. json={"input": texts, "model": model},
  393. )
  394. r.raise_for_status()
  395. data = r.json()
  396. if "data" in data:
  397. return [elem["embedding"] for elem in data["data"]]
  398. else:
  399. raise "Something went wrong :/"
  400. except Exception as e:
  401. print(e)
  402. return None
  403. def generate_ollama_batch_embeddings(
  404. model: str, texts: list[str], url: str, key: str = "", user: UserModel = None
  405. ) -> Optional[list[list[float]]]:
  406. try:
  407. r = requests.post(
  408. f"{url}/api/embed",
  409. headers={
  410. "Content-Type": "application/json",
  411. "Authorization": f"Bearer {key}",
  412. **(
  413. {
  414. "X-OpenWebUI-User-Name": user.name,
  415. "X-OpenWebUI-User-Id": user.id,
  416. "X-OpenWebUI-User-Email": user.email,
  417. "X-OpenWebUI-User-Role": user.role,
  418. }
  419. if ENABLE_FORWARD_USER_INFO_HEADERS
  420. else {}
  421. ),
  422. },
  423. json={"input": texts, "model": model},
  424. )
  425. r.raise_for_status()
  426. data = r.json()
  427. if "embeddings" in data:
  428. return data["embeddings"]
  429. else:
  430. raise "Something went wrong :/"
  431. except Exception as e:
  432. print(e)
  433. return None
  434. def generate_embeddings(engine: str, model: str, text: Union[str, list[str]], **kwargs):
  435. url = kwargs.get("url", "")
  436. key = kwargs.get("key", "")
  437. user = kwargs.get("user")
  438. if engine == "ollama":
  439. if isinstance(text, list):
  440. embeddings = generate_ollama_batch_embeddings(
  441. **{"model": model, "texts": text, "url": url, "key": key, "user": user}
  442. )
  443. else:
  444. embeddings = generate_ollama_batch_embeddings(
  445. **{
  446. "model": model,
  447. "texts": [text],
  448. "url": url,
  449. "key": key,
  450. "user": user,
  451. }
  452. )
  453. return embeddings[0] if isinstance(text, str) else embeddings
  454. elif engine == "openai":
  455. if isinstance(text, list):
  456. embeddings = generate_openai_batch_embeddings(model, text, url, key, user)
  457. else:
  458. embeddings = generate_openai_batch_embeddings(model, [text], url, key, user)
  459. return embeddings[0] if isinstance(text, str) else embeddings
  460. import operator
  461. from typing import Optional, Sequence
  462. from langchain_core.callbacks import Callbacks
  463. from langchain_core.documents import BaseDocumentCompressor, Document
  464. class RerankCompressor(BaseDocumentCompressor):
  465. embedding_function: Any
  466. top_n: int
  467. reranking_function: Any
  468. r_score: float
  469. class Config:
  470. extra = "forbid"
  471. arbitrary_types_allowed = True
  472. def compress_documents(
  473. self,
  474. documents: Sequence[Document],
  475. query: str,
  476. callbacks: Optional[Callbacks] = None,
  477. ) -> Sequence[Document]:
  478. reranking = self.reranking_function is not None
  479. if reranking:
  480. scores = self.reranking_function.predict(
  481. [(query, doc.page_content) for doc in documents]
  482. )
  483. else:
  484. from sentence_transformers import util
  485. query_embedding = self.embedding_function(query)
  486. document_embedding = self.embedding_function(
  487. [doc.page_content for doc in documents]
  488. )
  489. scores = util.cos_sim(query_embedding, document_embedding)[0]
  490. docs_with_scores = list(zip(documents, scores.tolist()))
  491. if self.r_score:
  492. docs_with_scores = [
  493. (d, s) for d, s in docs_with_scores if s >= self.r_score
  494. ]
  495. result = sorted(docs_with_scores, key=operator.itemgetter(1), reverse=True)
  496. final_results = []
  497. for doc, doc_score in result[: self.top_n]:
  498. metadata = doc.metadata
  499. metadata["score"] = doc_score
  500. doc = Document(
  501. page_content=doc.page_content,
  502. metadata=metadata,
  503. )
  504. final_results.append(doc)
  505. return final_results