chroma.py 4.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122
  1. import chromadb
  2. from chromadb import Settings
  3. from chromadb.utils.batch_utils import create_batches
  4. from typing import Optional
  5. from open_webui.apps.rag.vector.main import VectorItem, SearchResult, GetResult
  6. from open_webui.config import (
  7. CHROMA_DATA_PATH,
  8. CHROMA_HTTP_HOST,
  9. CHROMA_HTTP_PORT,
  10. CHROMA_HTTP_HEADERS,
  11. CHROMA_HTTP_SSL,
  12. CHROMA_TENANT,
  13. CHROMA_DATABASE,
  14. )
  15. class ChromaClient:
  16. def __init__(self):
  17. if CHROMA_HTTP_HOST != "":
  18. self.client = chromadb.HttpClient(
  19. host=CHROMA_HTTP_HOST,
  20. port=CHROMA_HTTP_PORT,
  21. headers=CHROMA_HTTP_HEADERS,
  22. ssl=CHROMA_HTTP_SSL,
  23. tenant=CHROMA_TENANT,
  24. database=CHROMA_DATABASE,
  25. settings=Settings(allow_reset=True, anonymized_telemetry=False),
  26. )
  27. else:
  28. self.client = chromadb.PersistentClient(
  29. path=CHROMA_DATA_PATH,
  30. settings=Settings(allow_reset=True, anonymized_telemetry=False),
  31. tenant=CHROMA_TENANT,
  32. database=CHROMA_DATABASE,
  33. )
  34. def has_collection(self, collection_name: str) -> bool:
  35. # Check if the collection exists based on the collection name.
  36. collections = self.client.list_collections()
  37. return collection_name in [collection.name for collection in collections]
  38. def delete_collection(self, collection_name: str):
  39. # Delete the collection based on the collection name.
  40. return self.client.delete_collection(name=collection_name)
  41. def search(
  42. self, collection_name: str, vectors: list[list[float | int]], limit: int
  43. ) -> Optional[SearchResult]:
  44. # Search for the nearest neighbor items based on the vectors and return 'limit' number of results.
  45. collection = self.client.get_collection(name=collection_name)
  46. if collection:
  47. result = collection.query(
  48. query_embeddings=vectors,
  49. n_results=limit,
  50. )
  51. return SearchResult(
  52. **{
  53. "ids": result["ids"],
  54. "distances": result["distances"],
  55. "documents": result["documents"],
  56. "metadatas": result["metadatas"],
  57. }
  58. )
  59. return None
  60. def get(self, collection_name: str) -> Optional[GetResult]:
  61. # Get all the items in the collection.
  62. collection = self.client.get_collection(name=collection_name)
  63. if collection:
  64. result = collection.get()
  65. return GetResult(
  66. **{
  67. "ids": [result["ids"]],
  68. "documents": [result["documents"]],
  69. "metadatas": [result["metadatas"]],
  70. }
  71. )
  72. return None
  73. def insert(self, collection_name: str, items: list[VectorItem]):
  74. # Insert the items into the collection, if the collection does not exist, it will be created.
  75. collection = self.client.get_or_create_collection(name=collection_name)
  76. ids = [item["id"] for item in items]
  77. documents = [item["text"] for item in items]
  78. embeddings = [item["vector"] for item in items]
  79. metadatas = [item["metadata"] for item in items]
  80. for batch in create_batches(
  81. api=self.client,
  82. documents=documents,
  83. embeddings=embeddings,
  84. ids=ids,
  85. metadatas=metadatas,
  86. ):
  87. collection.add(*batch)
  88. def upsert(self, collection_name: str, items: list[VectorItem]):
  89. # Update the items in the collection, if the items are not present, insert them. If the collection does not exist, it will be created.
  90. collection = self.client.get_or_create_collection(name=collection_name)
  91. ids = [item["id"] for item in items]
  92. documents = [item["text"] for item in items]
  93. embeddings = [item["vector"] for item in items]
  94. metadatas = [item["metadata"] for item in items]
  95. collection.upsert(
  96. ids=ids, documents=documents, embeddings=embeddings, metadatas=metadatas
  97. )
  98. def delete(self, collection_name: str, ids: list[str]):
  99. # Delete the items from the collection based on the ids.
  100. collection = self.client.get_collection(name=collection_name)
  101. if collection:
  102. collection.delete(ids=ids)
  103. def reset(self):
  104. # Resets the database. This will delete all collections and item entries.
  105. return self.client.reset()