123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204 |
- from pymilvus import MilvusClient as Client
- from pymilvus import FieldSchema, DataType
- import json
- from typing import Optional
- from open_webui.apps.rag.vector.main import VectorItem, SearchResult, GetResult
- from open_webui.config import (
- MILVUS_URI,
- )
- class MilvusClient:
- def __init__(self):
- self.collection_prefix = "open_webui"
- self.client = Client(uri=MILVUS_URI)
- def _result_to_get_result(self, result) -> GetResult:
- ids = []
- documents = []
- metadatas = []
- for match in result:
- _ids = []
- _documents = []
- _metadatas = []
- for item in match:
- _ids.append(item.get("id"))
- _documents.append(item.get("data", {}).get("text"))
- _metadatas.append(item.get("metadata"))
- ids.append(_ids)
- documents.append(_documents)
- metadatas.append(_metadatas)
- return GetResult(
- **{
- "ids": ids,
- "documents": documents,
- "metadatas": metadatas,
- }
- )
- def _result_to_search_result(self, result) -> SearchResult:
- ids = []
- distances = []
- documents = []
- metadatas = []
- for match in result:
- _ids = []
- _distances = []
- _documents = []
- _metadatas = []
- for item in match:
- _ids.append(item.get("id"))
- _distances.append(item.get("distance"))
- _documents.append(item.get("entity", {}).get("data", {}).get("text"))
- _metadatas.append(item.get("entity", {}).get("metadata"))
- ids.append(_ids)
- distances.append(_distances)
- documents.append(_documents)
- metadatas.append(_metadatas)
- return SearchResult(
- **{
- "ids": ids,
- "distances": distances,
- "documents": documents,
- "metadatas": metadatas,
- }
- )
- def _create_collection(self, collection_name: str, dimension: int):
- schema = self.client.create_schema(
- auto_id=False,
- enable_dynamic_field=True,
- )
- schema.add_field(
- field_name="id",
- datatype=DataType.VARCHAR,
- is_primary=True,
- max_length=65535,
- )
- schema.add_field(
- field_name="vector",
- datatype=DataType.FLOAT_VECTOR,
- dim=dimension,
- description="vector",
- )
- schema.add_field(field_name="data", datatype=DataType.JSON, description="data")
- schema.add_field(
- field_name="metadata", datatype=DataType.JSON, description="metadata"
- )
- index_params = self.client.prepare_index_params()
- index_params.add_index(
- field_name="vector",
- index_type="HNSW",
- metric_type="COSINE",
- params={"M": 16, "efConstruction": 100},
- )
- self.client.create_collection(
- collection_name=f"{self.collection_prefix}_{collection_name}",
- schema=schema,
- index_params=index_params,
- )
- def has_collection(self, collection_name: str) -> bool:
- # Check if the collection exists based on the collection name.
- return self.client.has_collection(
- collection_name=f"{self.collection_prefix}_{collection_name}"
- )
- def delete_collection(self, collection_name: str):
- # Delete the collection based on the collection name.
- return self.client.drop_collection(
- collection_name=f"{self.collection_prefix}_{collection_name}"
- )
- def search(
- self, collection_name: str, vectors: list[list[float | int]], limit: int
- ) -> Optional[SearchResult]:
- # Search for the nearest neighbor items based on the vectors and return 'limit' number of results.
- result = self.client.search(
- collection_name=f"{self.collection_prefix}_{collection_name}",
- data=vectors,
- limit=limit,
- output_fields=["data", "metadata"],
- )
- return self._result_to_search_result(result)
- def get(self, collection_name: str) -> Optional[GetResult]:
- # Get all the items in the collection.
- result = self.client.query(
- collection_name=f"{self.collection_prefix}_{collection_name}",
- filter='id != ""',
- )
- return self._result_to_get_result([result])
- def insert(self, collection_name: str, items: list[VectorItem]):
- # Insert the items into the collection, if the collection does not exist, it will be created.
- if not self.client.has_collection(
- collection_name=f"{self.collection_prefix}_{collection_name}"
- ):
- self._create_collection(
- collection_name=collection_name, dimension=len(items[0]["vector"])
- )
- return self.client.insert(
- collection_name=f"{self.collection_prefix}_{collection_name}",
- data=[
- {
- "id": item["id"],
- "vector": item["vector"],
- "data": {"text": item["text"]},
- "metadata": item["metadata"],
- }
- for item in items
- ],
- )
- def upsert(self, collection_name: str, items: list[VectorItem]):
- # Update the items in the collection, if the items are not present, insert them. If the collection does not exist, it will be created.
- if not self.client.has_collection(
- collection_name=f"{self.collection_prefix}_{collection_name}"
- ):
- self._create_collection(
- collection_name=collection_name, dimension=len(items[0]["vector"])
- )
- return self.client.upsert(
- collection_name=f"{self.collection_prefix}_{collection_name}",
- data=[
- {
- "id": item["id"],
- "vector": item["vector"],
- "data": {"text": item["text"]},
- "metadata": item["metadata"],
- }
- for item in items
- ],
- )
- def delete(self, collection_name: str, ids: list[str]):
- # Delete the items from the collection based on the ids.
- return self.client.delete(
- collection_name=f"{self.collection_prefix}_{collection_name}",
- ids=ids,
- )
- def reset(self):
- # Resets the database. This will delete all collections and item entries.
- collection_names = self.client.list_collections()
- for collection_name in collection_names:
- if collection_name.startswith(self.collection_prefix):
- self.client.drop_collection(collection_name=collection_name)
|